| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
DHCP clients might try to resolve the assigned address to check if it's
already in use: don't resolve the configured IPv4 address.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
Depending on the configuration, the host might have the same address.
Don't answer them to avoid a duplicate IP address detection.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
| |
More details here after rebase.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
And while at it, remove some attributes that are not needed anymore
after introducing command line options.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Once we're past the IA_NA or IA_TA option itself, before we start
looking for IA_ADDR suboptions, we need to subtract the length
of the option we parsed so far, otherwise we might end up reading
past the end of the message, or miss some parts.
While at it, streamline calculations in dhcpv6_opt().
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As data from socket is forwarded to the guest, sendmmsg() might send
fewer bytes than requested in three different ways:
- failing altogether with a negative error code -- ignore that,
we'll get an error on the UNIX domain socket later if there's
really an issue with it and reset the connection to the guest
- sending less than 'vlen' messages -- instead of assuming success
in that case and waiting for the guest to send a duplicate ACK
indicating missing data, update the sequence number according to
what was actually sent and spare some retransmissions
- somewhat unexpectedly to me, sending 'vlen' or less than 'vlen'
messages, returning up to 'vlen', with the last message being
partially sent, and no further indication of errors other than
the returned msg_len for the last partially sent message being
less than iov_len.
In this case, we would assume success and proceed as nothing
happened. However, qemu would fail to parse any further message,
having received a partial descriptor, and eventually close the
connection, logging:
serious error: oversized packet received,connection terminated.
as the length descriptor for the next message would be sourced
from the middle of the next successfully sent message, not from
its header.
Handle this by checking the msg_len returned for the last (even
partially) sent message, and force re-sending the missing bytes,
if any, with a blocking sendmsg() -- qemu must not receive
anything else than that anyway.
While at it, allow to send up to 64KiB for each message, the
previous 32KiB limit isn't actually required, and just switch to a
new message at each iteration on sending buffers, they are already
MSS-sized anyway, so the check in the loop isn't really needed.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With a kernel older than 5.3 (no_snd_wnd set), ack_pending in
tcp_send_to_tap() might be true at the beginning of a new connection
initiated by a socket. This means we send the first SYN segment to the
tap together with ACK set, which is clearly invalid and triggers the
receiver to reply with an RST segment right away.
Set ack_pending to 0 whenever we're sending a SYN segment. In case of a
SYN, ACK segment sent by the caller, the caller passes the ACK flag
explicitly.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
Socket-facing functions don't guarantee that all data is handled before
they return: stick to level-triggered mode for TCP sockets.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
...they're still usable, thanks to the workaround implemented in
icmp_tap_handler().
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
Four sub-second digits means 0.1ms units: divide nanoseconds by
10^5, not 10^6.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
...and while at it, fix an issue in the calculation of the last IOV
buffer size: if we can't receive enough data to fill up the window,
the last buffer can be filled completely.
Also streamline the code setting iovec lengths if cached values are
not matching.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We won't necessarily have another choice to ACK in a timely fashion
if we skip ACKs from a number of states (including ESTABLISHED) when
there's enough window left. Check for ACKed bytes as soon as it makes
sense.
If the sending window is not reported by the kernel, ACK as soon as
we queue onto the socket, given that we're forced to use a rather
small window.
In FIN_WAIT_1_SOCK_FIN, we also have to account for the FIN flag sent
by the peer in the sequence.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
Sending 64 frames in a batch looks quite bad when a duplicate ACK
comes right at the beginning of it. Lowering this to 32 doesn't
affect performance noticeably, with 16 the impact is more apparent.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to UDP, but using a simple sendmsg() on iovec-style buffers
from tap instead, as we don't need to preserve message boundaries.
A quick test in PASTA mode, from namespace to init via tap:
# ip link set dev pasta0 mtu 16384
# iperf3 -c 192.168.1.222 -t 60
[...]
[ ID] Interval Transfer Bitrate
[ 5] 0.00-60.00 sec 80.4 GBytes 11.5 Gbits/sec receiver
# iperf3 -c 2a02:6d40:3cfc:3a01:2b20:4a6a:c25a:3056 -t 60
[...]
[ ID] Interval Transfer Bitrate
[ 5] 0.00-60.01 sec 39.9 GBytes 5.71 Gbits/sec receiver
# ip link set dev pasta0 mtu 65520
# iperf3 -c 192.168.1.222 -t 60
[...]
[ ID] Interval Transfer Bitrate
[ 5] 0.00-60.01 sec 88.7 GBytes 12.7 Gbits/sec receiver
# iperf3 -c 2a02:6d40:3cfc:3a01:2b20:4a6a:c25a:3056 -t 60
[...]
[ ID] Interval Transfer Bitrate
[ 5] 0.00-60.00 sec 79.5 GBytes 11.4 Gbits/sec receiver
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
There's no need to constantly query the socket for number of
acknowledged bytes if we're far from exhausting the sending window,
just do it if we're at least down to 90% of it.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
...boom. To make it slightly more reasonable, shrink struct tap_msg
down a bit, and move the main message array away from the stack of
tap_handler_passt().
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
| |
...instead of just 127.0.0.1.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we can't bind() ping sockets, the echo identifier sent out from
the socket won't be the original one seen from the tap. Binding a
ping socket doesn't require any security capability, but it might
still fail due to a broken SELinux policy, see for example:
https://bugzilla.redhat.com/show_bug.cgi?id=1848929
Track the ICMP echo identifier as part of the epoll reference for
the socket and replace it in the reply on mismatch. We won't send
out the original identifier as sent from the guest, but still better
than missing replies.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
...similarly to what was done for UDP. Quick performance test with
32KiB buffers, host to VM:
$ iperf3 -c 192.0.2.2 -N
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 8.47 GBytes 7.27 Gbits/sec 0 sender
[ 5] 0.00-10.00 sec 8.45 GBytes 7.26 Gbits/sec receiver
$ iperf3 -c 2a01:598:88ba:a056:271f:473a:c0d9:abc1
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 8.43 GBytes 7.24 Gbits/sec 0 sender
[ 5] 0.00-10.00 sec 8.41 GBytes 7.22 Gbits/sec receiver
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
If a tap protocol handler doesn't consume the full batch of packets
in one go, we already overrode the destination address in the packet
buffer with the address which is configured at start. If we re-enter
the tap handler, we shouldn't use the address from the packet buffers
anymore to set the observed address of the guest: that's not the
address observed from the guest, it's the configured one now.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
Traffic with loopback source address will be forwarded to the direct
loopback connection in the namespace, and the tap interface is used
for the rest.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
| |
...this is convenient for performance testing.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
| |
This isn't optional: TCP streams must carry a unique, hard-to-guess,
non-zero label for each direction. Linux, probably among others,
will otherwise refuse to associate packets in a given stream to the
same connection.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Provide an AVX2-based function using compiler intrinsics for
TCP/IP-style checksums. The load/unpack/add idea and implementation
is largely based on code from BESS (the Berkeley Extensible Software
Switch) licensed as 3-Clause BSD, with a number of modifications to
further decrease pipeline stalls and to minimise cache pollution.
This speeds up considerably data paths from sockets to tap
interfaces, decreasing overhead for checksum computation, with
16-64KiB packet buffers, from approximately 11% to 7%. The rest is
just syscalls at this point.
While at it, provide convenience targets in the Makefile for avx2,
avx2_debug, and debug targets -- these simply add target-specific
CFLAGS to the build.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
dhcpv6_opt() already reflects consumed bytes on the remaining length,
and that we're not exceeding the message length. At this point, the
remaining length is usually zero.
While at it, drop a useless __packed__ attribute that triggers a gcc
warning.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Allow to bind IPv4 and IPv6 ports to tap, namespace or init separately.
Port numbers of TCP ports that are bound in a namespace are also bound
for UDP for convenience (e.g. iperf3), and IPv4 ports are always bound
if the corresponding IPv6 port is bound (socket might not have the
IPV6_V6ONLY option set). This will also be configurable later.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
...not just for loopback addresses, with the address of the default
gateway. Otherwise, the guest might receive packets with source and
destination set to the same address.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
This is actually reasonable in terms of memory consumption and
allows for better performance with local services.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
Packets are received directly onto pre-cooked, static buffers
for IPv4 (with partial checksum pre-calculation) and IPv6 frames,
with pre-filled Ethernet addresses and, partially, IP headers,
and sent out from the same buffers with sendmmsg(), for both
passt and pasta (non-local traffic only) modes.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
The guest might not send other types of traffic before we try to
communicate to it, so take also this chance to store its configured
addresses.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
| |
There's no reason to limit the MTU here to any lower value.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
This value should work for all tap-like interfaces and is rather
convenient for performance testing. It will be configurable later
on.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
On pc-q35, pci.2 is usually configured by libvirt as a hotplug bus,
so we can't use address 0x0 there. Look for free busses starting from
pci.3 instead.
While at it, add proper error reporting for passt probing, and add
some comments to structs that were previously missing.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
If no IPv6 global addresses are available, proceed with just IPv4
addresses and routes.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|