// SPDX-License-Identifier: AGPL-3.0-or-later /* PASST - Plug A Simple Socket Transport * for qemu/UNIX domain socket mode * * PASTA - Pack A Subtle Tap Abstraction * for network namespace/tap device mode * * udp.c - UDP L2-L4 translation routines * * Copyright (c) 2020-2021 Red Hat GmbH * Author: Stefano Brivio */ /** * DOC: Theory of Operation * * * For UDP, a reduced version of port-based connection tracking is implemented * with two purposes: * - binding ephemeral ports when they're used as source port by the guest, so * that replies on those ports can be forwarded back to the guest, with a * fixed timeout for this binding * - packets received from the local host get their source changed to a local * address (gateway address) so that they can be forwarded to the guest, and * packets sent as replies by the guest need their destination address to * be changed back to the address of the local host. This is dynamic to allow * connections from the gateway as well, and uses the same fixed 180s timeout * * Sockets for bound ports are created at initialisation time, one set for IPv4 * and one for IPv6. * * Packets are forwarded back and forth, by prepending and stripping UDP headers * in the obvious way, with no port translation. * * In PASTA mode, the L2-L4 translation is skipped for connections to ports * bound between namespaces using the loopback interface, messages are directly * transferred between L4 sockets instead. These are called spliced connections * for consistency with the TCP implementation, but the splice() syscall isn't * actually used as it wouldn't make sense for datagram-based connections: a * pair of recvmmsg() and sendmmsg() deals with this case. * * The connection tracking for PASTA mode is slightly complicated by the absence * of actual connections, see struct udp_splice_port, and these examples: * * - from init to namespace: * * - forward direction: 127.0.0.1:5000 -> 127.0.0.1:80 in init from socket s, * with epoll reference: index = 80, splice = 1, orig = 1, ns = 0 * - if udp_splice_ns[V4][5000].sock: * - send packet to udp_splice_ns[V4][5000].sock, with destination port * 80 * - otherwise: * - create new socket udp_splice_ns[V4][5000].sock * - bind in namespace to 127.0.0.1:5000 * - add to epoll with reference: index = 5000, splice = 1, orig = 0, * ns = 1 * - update udp_splice_init[V4][80].ts and udp_splice_ns[V4][5000].ts with * current time * * - reverse direction: 127.0.0.1:80 -> 127.0.0.1:5000 in namespace socket s, * having epoll reference: index = 5000, splice = 1, orig = 0, ns = 1 * - if udp_splice_init[V4][80].sock: * - send to udp_splice_init[V4][80].sock, with destination port 5000 * - update udp_splice_init[V4][80].ts and udp_splice_ns[V4][5000].ts with * current time * - otherwise, discard * * - from namespace to init: * * - forward direction: 127.0.0.1:2000 -> 127.0.0.1:22 in namespace from * socket s, with epoll reference: index = 22, splice = 1, orig = 1, ns = 1 * - if udp4_splice_init[V4][2000].sock: * - send packet to udp_splice_init[V4][2000].sock, with destination * port 22 * - otherwise: * - create new socket udp_splice_init[V4][2000].sock * - bind in init to 127.0.0.1:2000 * - add to epoll with reference: index = 2000, splice = 1, orig = 0, * ns = 0 * - update udp_splice_ns[V4][22].ts and udp_splice_init[V4][2000].ts with * current time * * - reverse direction: 127.0.0.1:22 -> 127.0.0.1:2000 in init from socket s, * having epoll reference: index = 2000, splice = 1, orig = 0, ns = 0 * - if udp_splice_ns[V4][22].sock: * - send to udp_splice_ns[V4][22].sock, with destination port 2000 * - update udp_splice_ns[V4][22].ts and udp_splice_init[V4][2000].ts with * current time * - otherwise, discard */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "checksum.h" #include "util.h" #include "passt.h" #include "tap.h" #include "pcap.h" #include "log.h" #define UDP_CONN_TIMEOUT 180 /* s, timeout for ephemeral or local bind */ #define UDP_MAX_FRAMES 32 /* max # of frames to receive at once */ #define UDP_TAP_FRAMES (c->mode == MODE_PASST ? UDP_MAX_FRAMES : 1) /** * struct udp_tap_port - Port tracking based on tap-facing source port * @sock: Socket bound to source port used as index * @flags: Flags for local bind, loopback address/unicast address as source * @ts: Activity timestamp from tap, used for socket aging */ struct udp_tap_port { int sock; uint8_t flags; #define PORT_LOCAL BIT(0) #define PORT_LOOPBACK BIT(1) #define PORT_GUA BIT(2) time_t ts; }; /** * struct udp_splice_port - Bound socket for spliced communication * @sock: Socket bound to index port * @ts: Activity timestamp */ struct udp_splice_port { int sock; time_t ts; }; /* Port tracking, arrays indexed by packet source port (host order) */ static struct udp_tap_port udp_tap_map [IP_VERSIONS][NUM_PORTS]; /* "Spliced" sockets indexed by bound port (host order) */ static struct udp_splice_port udp_splice_ns [IP_VERSIONS][NUM_PORTS]; static struct udp_splice_port udp_splice_init[IP_VERSIONS][NUM_PORTS]; enum udp_act_type { UDP_ACT_TAP, UDP_ACT_SPLICE_NS, UDP_ACT_SPLICE_INIT, UDP_ACT_TYPE_MAX, }; /* Activity-based aging for bindings */ static uint8_t udp_act[IP_VERSIONS][UDP_ACT_TYPE_MAX][DIV_ROUND_UP(NUM_PORTS, 8)]; /* Static buffers */ /** * udp4_l2_buf_t - Pre-cooked IPv4 packet buffers for tap connections * @s_in: Source socket address, filled in by recvmmsg() * @psum: Partial IP header checksum (excluding tot_len and saddr) * @vnet_len: 4-byte qemu vnet buffer length descriptor, only for passt mode * @eh: Pre-filled Ethernet header * @iph: Pre-filled IP header (except for tot_len and saddr) * @uh: Headroom for UDP header * @data: Storage for UDP payload */ static struct udp4_l2_buf_t { struct sockaddr_in s_in; uint32_t psum; uint32_t vnet_len; struct ethhdr eh; struct iphdr iph; struct udphdr uh; uint8_t data[USHRT_MAX - (sizeof(struct iphdr) + sizeof(struct udphdr))]; } __attribute__ ((packed, aligned(__alignof__(unsigned int)))) udp4_l2_buf[UDP_MAX_FRAMES]; /** * udp6_l2_buf_t - Pre-cooked IPv6 packet buffers for tap connections * @s_in6: Source socket address, filled in by recvmmsg() * @vnet_len: 4-byte qemu vnet buffer length descriptor, only for passt mode * @eh: Pre-filled Ethernet header * @ip6h: Pre-filled IP header (except for payload_len and addresses) * @uh: Headroom for UDP header * @data: Storage for UDP payload */ struct udp6_l2_buf_t { struct sockaddr_in6 s_in6; #ifdef __AVX2__ /* Align ip6h to 32-byte boundary. */ uint8_t pad[64 - (sizeof(struct sockaddr_in6) + sizeof(struct ethhdr) + sizeof(uint32_t))]; #endif uint32_t vnet_len; struct ethhdr eh; struct ipv6hdr ip6h; struct udphdr uh; uint8_t data[USHRT_MAX - (sizeof(struct ipv6hdr) + sizeof(struct udphdr))]; #ifdef __AVX2__ } __attribute__ ((packed, aligned(32))) #else } __attribute__ ((packed, aligned(__alignof__(unsigned int)))) #endif udp6_l2_buf[UDP_MAX_FRAMES]; static struct sockaddr_storage udp_splice_namebuf; static uint8_t udp_splice_buf[UDP_MAX_FRAMES][USHRT_MAX]; /* recvmmsg()/sendmmsg() data for tap */ static struct iovec udp4_l2_iov_sock [UDP_MAX_FRAMES]; static struct iovec udp6_l2_iov_sock [UDP_MAX_FRAMES]; static struct iovec udp4_l2_iov_tap [UDP_MAX_FRAMES]; static struct iovec udp6_l2_iov_tap [UDP_MAX_FRAMES]; static struct mmsghdr udp4_l2_mh_sock [UDP_MAX_FRAMES]; static struct mmsghdr udp6_l2_mh_sock [UDP_MAX_FRAMES]; static struct mmsghdr udp4_l2_mh_tap [UDP_MAX_FRAMES]; static struct mmsghdr udp6_l2_mh_tap [UDP_MAX_FRAMES]; /* recvmmsg()/sendmmsg() data for "spliced" connections */ static struct iovec udp_iov_recv [UDP_MAX_FRAMES]; static struct mmsghdr udp_mmh_recv [UDP_MAX_FRAMES]; static struct iovec udp_iov_sendto [UDP_MAX_FRAMES]; static struct mmsghdr udp_mmh_sendto [UDP_MAX_FRAMES]; /** * udp_invert_portmap() - Compute reverse port translations for return packets * @fwd: Port forwarding configuration to compute reverse map for */ static void udp_invert_portmap(struct udp_port_fwd *fwd) { int i; assert(ARRAY_SIZE(fwd->f.delta) == ARRAY_SIZE(fwd->rdelta)); for (i = 0; i < ARRAY_SIZE(fwd->f.delta); i++) { in_port_t delta = fwd->f.delta[i]; if (delta) fwd->rdelta[(in_port_t)i + delta] = NUM_PORTS - delta; } } /** * udp_update_check4() - Update checksum with variable parts from stored one * @buf: L2 packet buffer with final IPv4 header */ static void udp_update_check4(struct udp4_l2_buf_t *buf) { uint32_t sum = buf->psum; sum += buf->iph.tot_len; sum += (buf->iph.saddr >> 16) & 0xffff; sum += buf->iph.saddr & 0xffff; buf->iph.check = (uint16_t)~csum_fold(sum); } /** * udp_update_l2_buf() - Update L2 buffers with Ethernet and IPv4 addresses * @eth_d: Ethernet destination address, NULL if unchanged * @eth_s: Ethernet source address, NULL if unchanged * @ip_da: Pointer to IPv4 destination address, NULL if unchanged */ void udp_update_l2_buf(const unsigned char *eth_d, const unsigned char *eth_s, const struct in_addr *ip_da) { int i; for (i = 0; i < UDP_MAX_FRAMES; i++) { struct udp4_l2_buf_t *b4 = &udp4_l2_buf[i]; struct udp6_l2_buf_t *b6 = &udp6_l2_buf[i]; if (eth_d) { memcpy(b4->eh.h_dest, eth_d, ETH_ALEN); memcpy(b6->eh.h_dest, eth_d, ETH_ALEN); } if (eth_s) { memcpy(b4->eh.h_source, eth_s, ETH_ALEN); memcpy(b6->eh.h_source, eth_s, ETH_ALEN); } if (ip_da) { b4->iph.daddr = ip_da->s_addr; if (!i) { b4->iph.saddr = 0; b4->iph.tot_len = 0; b4->iph.check = 0; b4->psum = sum_16b(&b4->iph, 20); } else { b4->psum = udp4_l2_buf[0].psum; } } } } /** * udp_sock4_iov_init() - Initialise scatter-gather L2 buffers for IPv4 sockets */ static void udp_sock4_iov_init(void) { struct mmsghdr *h; int i; for (i = 0; i < ARRAY_SIZE(udp4_l2_buf); i++) { udp4_l2_buf[i] = (struct udp4_l2_buf_t) { { 0 }, 0, 0, L2_BUF_ETH_IP4_INIT, L2_BUF_IP4_INIT(IPPROTO_UDP), {{{ 0 }}}, { 0 }, }; } for (i = 0, h = udp4_l2_mh_sock; i < UDP_MAX_FRAMES; i++, h++) { struct msghdr *mh = &h->msg_hdr; mh->msg_name = &udp4_l2_buf[i].s_in; mh->msg_namelen = sizeof(udp4_l2_buf[i].s_in); udp4_l2_iov_sock[i].iov_base = udp4_l2_buf[i].data; udp4_l2_iov_sock[i].iov_len = sizeof(udp4_l2_buf[i].data); mh->msg_iov = &udp4_l2_iov_sock[i]; mh->msg_iovlen = 1; } for (i = 0, h = udp4_l2_mh_tap; i < UDP_MAX_FRAMES; i++, h++) { struct msghdr *mh = &h->msg_hdr; udp4_l2_iov_tap[i].iov_base = &udp4_l2_buf[i].vnet_len; mh->msg_iov = &udp4_l2_iov_tap[i]; mh->msg_iovlen = 1; } } /** * udp_sock6_iov_init() - Initialise scatter-gather L2 buffers for IPv6 sockets */ static void udp_sock6_iov_init(void) { struct mmsghdr *h; int i; for (i = 0; i < ARRAY_SIZE(udp6_l2_buf); i++) { udp6_l2_buf[i] = (struct udp6_l2_buf_t) { { 0 }, #ifdef __AVX2__ { 0 }, #endif 0, L2_BUF_ETH_IP6_INIT, L2_BUF_IP6_INIT(IPPROTO_UDP), {{{ 0 }}}, { 0 }, }; } for (i = 0, h = udp6_l2_mh_sock; i < UDP_MAX_FRAMES; i++, h++) { struct msghdr *mh = &h->msg_hdr; mh->msg_name = &udp6_l2_buf[i].s_in6; mh->msg_namelen = sizeof(struct sockaddr_in6); udp6_l2_iov_sock[i].iov_base = udp6_l2_buf[i].data; udp6_l2_iov_sock[i].iov_len = sizeof(udp6_l2_buf[i].data); mh->msg_iov = &udp6_l2_iov_sock[i]; mh->msg_iovlen = 1; } for (i = 0, h = udp6_l2_mh_tap; i < UDP_MAX_FRAMES; i++, h++) { struct msghdr *mh = &h->msg_hdr; udp6_l2_iov_tap[i].iov_base = &udp6_l2_buf[i].vnet_len; mh->msg_iov = &udp6_l2_iov_tap[i]; mh->msg_iovlen = 1; } } /** * udp_splice_new() - Create and prepare socket for "spliced" binding * @c: Execution context * @v6: Set for IPv6 sockets * @src: Source port of original connection, host order * @splice: UDP_BACK_TO_INIT from init, UDP_BACK_TO_NS from namespace * * Return: prepared socket, negative error code on failure * * #syscalls:pasta getsockname */ int udp_splice_new(const struct ctx *c, int v6, in_port_t src, bool ns) { struct epoll_event ev = { .events = EPOLLIN | EPOLLRDHUP | EPOLLHUP }; union epoll_ref ref = { .r.proto = IPPROTO_UDP, .r.p.udp.udp = { .splice = true, .ns = ns, .v6 = v6, .port = src } }; struct udp_splice_port *sp; int act, s; if (ns) { sp = &udp_splice_ns[v6 ? V6 : V4][src]; act = UDP_ACT_SPLICE_NS; } else { sp = &udp_splice_init[v6 ? V6 : V4][src]; act = UDP_ACT_SPLICE_INIT; } s = socket(v6 ? AF_INET6 : AF_INET, SOCK_DGRAM | SOCK_NONBLOCK, IPPROTO_UDP); if (s > SOCKET_MAX) { close(s); return -EIO; } if (s < 0) return s; ref.r.s = s; if (v6) { struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6, .sin6_port = htons(src), .sin6_addr = IN6ADDR_LOOPBACK_INIT, }; if (bind(s, (struct sockaddr *)&addr6, sizeof(addr6))) goto fail; } else { struct sockaddr_in addr4 = { .sin_family = AF_INET, .sin_port = htons(src), .sin_addr = { .s_addr = htonl(INADDR_LOOPBACK) }, }; if (bind(s, (struct sockaddr *)&addr4, sizeof(addr4))) goto fail; } sp->sock = s; bitmap_set(udp_act[v6 ? V6 : V4][act], src); ev.data.u64 = ref.u64; epoll_ctl(c->epollfd, EPOLL_CTL_ADD, s, &ev); return s; fail: close(s); return -1; } /** * struct udp_splice_new_ns_arg - Arguments for udp_splice_new_ns() * @c: Execution context * @v6: Set for IPv6 * @src: Source port of originating datagram, host order * @dst: Destination port of originating datagram, host order * @s: Newly created socket or negative error code */ struct udp_splice_new_ns_arg { const struct ctx *c; int v6; in_port_t src; int s; }; /** * udp_splice_new_ns() - Enter namespace and call udp_splice_new() * @arg: See struct udp_splice_new_ns_arg * * Return: 0 */ static int udp_splice_new_ns(void *arg) { struct udp_splice_new_ns_arg *a; a = (struct udp_splice_new_ns_arg *)arg; if (ns_enter(a->c)) return 0; a->s = udp_splice_new(a->c, a->v6, a->src, true); return 0; } /** * udp_sock_handler_splice() - Handler for socket mapped to "spliced" connection * @c: Execution context * @ref: epoll reference * @events: epoll events bitmap * @now: Current timestamp */ static void udp_sock_handler_splice(const struct ctx *c, union epoll_ref ref, uint32_t events, const struct timespec *now) { in_port_t src, dst = ref.r.p.udp.udp.port; struct msghdr *mh = &udp_mmh_recv[0].msg_hdr; struct sockaddr_storage *sa_s = mh->msg_name; int s, v6 = ref.r.p.udp.udp.v6, n, i; if (!(events & EPOLLIN)) return; n = recvmmsg(ref.r.s, udp_mmh_recv, UDP_MAX_FRAMES, 0, NULL); if (n <= 0) return; if (v6) { struct sockaddr_in6 *sa = (struct sockaddr_in6 *)sa_s; src = htons(sa->sin6_port); } else { struct sockaddr_in *sa = (struct sockaddr_in *)sa_s; src = ntohs(sa->sin_port); } if (ref.r.p.udp.udp.ns) { src += c->udp.fwd_in.rdelta[src]; s = udp_splice_init[v6][src].sock; if (!s && ref.r.p.udp.udp.orig) s = udp_splice_new(c, v6, src, false); if (s < 0) return; udp_splice_ns[v6][dst].ts = now->tv_sec; udp_splice_init[v6][src].ts = now->tv_sec; } else { src += c->udp.fwd_out.rdelta[src]; s = udp_splice_ns[v6][src].sock; if (!s && ref.r.p.udp.udp.orig) { struct udp_splice_new_ns_arg arg = { c, v6, src, -1, }; NS_CALL(udp_splice_new_ns, &arg); s = arg.s; } if (s < 0) return; udp_splice_init[v6][dst].ts = now->tv_sec; udp_splice_ns[v6][src].ts = now->tv_sec; } for (i = 0; i < n; i++) { struct msghdr *mh_s = &udp_mmh_sendto[i].msg_hdr; mh_s->msg_iov->iov_len = udp_mmh_recv[i].msg_len; } if (v6) { *((struct sockaddr_in6 *)&udp_splice_namebuf) = ((struct sockaddr_in6) { .sin6_family = AF_INET6, .sin6_addr = IN6ADDR_LOOPBACK_INIT, .sin6_port = htons(dst), .sin6_scope_id = 0, }); } else { *((struct sockaddr_in *)&udp_splice_namebuf) = ((struct sockaddr_in) { .sin_family = AF_INET, .sin_addr = { .s_addr = htonl(INADDR_LOOPBACK) }, .sin_port = htons(dst), .sin_zero = { 0 }, }); } sendmmsg(s, udp_mmh_sendto, n, MSG_NOSIGNAL); } /** * udp_sock_fill_data_v4() - Fill and queue one buffer. In pasta mode, write it * @c: Execution context * @n: Index of buffer in udp4_l2_buf pool * @ref: epoll reference from socket * @msg_idx: Index within message being prepared (spans multiple buffers) * @msg_len: Length of current message being prepared for sending * @now: Current timestamp */ static void udp_sock_fill_data_v4(const struct ctx *c, int n, union epoll_ref ref, int *msg_idx, int *msg_bufs, ssize_t *msg_len, const struct timespec *now) { struct msghdr *mh = &udp6_l2_mh_tap[*msg_idx].msg_hdr; struct udp4_l2_buf_t *b = &udp4_l2_buf[n]; size_t ip_len, buf_len; in_port_t src_port; ip_len = udp4_l2_mh_sock[n].msg_len + sizeof(b->iph) + sizeof(b->uh); b->iph.tot_len = htons(ip_len); src_port = ntohs(b->s_in.sin_port); if (!IN4_IS_ADDR_UNSPECIFIED(&c->ip4.dns_match) && IN4_ARE_ADDR_EQUAL(&b->s_in.sin_addr, &c->ip4.dns_host) && src_port == 53) { b->iph.saddr = c->ip4.dns_match.s_addr; } else if (IN4_IS_ADDR_LOOPBACK(&b->s_in.sin_addr) || IN4_IS_ADDR_UNSPECIFIED(&b->s_in.sin_addr)|| IN4_ARE_ADDR_EQUAL(&b->s_in.sin_addr, &c->ip4.addr_seen)) { b->iph.saddr = c->ip4.gw.s_addr; udp_tap_map[V4][src_port].ts = now->tv_sec; udp_tap_map[V4][src_port].flags |= PORT_LOCAL; if (IN4_ARE_ADDR_EQUAL(&b->s_in.sin_addr.s_addr, &c->ip4.addr_seen)) udp_tap_map[V4][src_port].flags &= ~PORT_LOOPBACK; else udp_tap_map[V4][src_port].flags |= PORT_LOOPBACK; bitmap_set(udp_act[V4][UDP_ACT_TAP], src_port); } else { b->iph.saddr = b->s_in.sin_addr.s_addr; } udp_update_check4(b); b->uh.source = b->s_in.sin_port; b->uh.dest = htons(ref.r.p.udp.udp.port); b->uh.len = htons(udp4_l2_mh_sock[n].msg_len + sizeof(b->uh)); if (c->mode == MODE_PASTA) { /* If we pass &b->eh directly to write(), starting from * gcc 12.1, at least on aarch64 and x86_64, we get a bogus * stringop-overread warning, due to: * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103483 * * but we can't disable it with a pragma, because it will be * ignored if LTO is enabled: * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80922 */ void *frame = (char *)b + offsetof(struct udp4_l2_buf_t, eh); if (write(c->fd_tap, frame, sizeof(b->eh) + ip_len) < 0) debug("tap write: %s", strerror(errno)); pcap(frame, sizeof(b->eh) + ip_len); return; } b->vnet_len = htonl(ip_len + sizeof(struct ethhdr)); buf_len = sizeof(uint32_t) + sizeof(struct ethhdr) + ip_len; udp4_l2_iov_tap[n].iov_len = buf_len; /* With bigger messages, qemu closes the connection. */ if (*msg_bufs && *msg_len + buf_len > SHRT_MAX) { mh->msg_iovlen = *msg_bufs; (*msg_idx)++; udp4_l2_mh_tap[*msg_idx].msg_hdr.msg_iov = &udp4_l2_iov_tap[n]; *msg_len = *msg_bufs = 0; } *msg_len += buf_len; (*msg_bufs)++; } /** * udp_sock_fill_data_v4() - Fill and queue one buffer. In pasta mode, write it * @c: Execution context * @n: Index of buffer in udp4_l2_buf pool * @ref: epoll reference from socket * @msg_idx: Index within message being prepared (spans multiple buffers) * @msg_len: Length of current message being prepared for sending * @now: Current timestamp */ static void udp_sock_fill_data_v6(const struct ctx *c, int n, union epoll_ref ref, int *msg_idx, int *msg_bufs, ssize_t *msg_len, const struct timespec *now) { struct msghdr *mh = &udp6_l2_mh_tap[*msg_idx].msg_hdr; struct udp6_l2_buf_t *b = &udp6_l2_buf[n]; size_t ip_len, buf_len; struct in6_addr *src; in_port_t src_port; src = &b->s_in6.sin6_addr; src_port = ntohs(b->s_in6.sin6_port); ip_len = udp6_l2_mh_sock[n].msg_len + sizeof(b->ip6h) + sizeof(b->uh); b->ip6h.payload_len = htons(udp6_l2_mh_sock[n].msg_len + sizeof(b->uh)); if (IN6_IS_ADDR_LINKLOCAL(src)) { b->ip6h.daddr = c->ip6.addr_ll_seen; b->ip6h.saddr = b->s_in6.sin6_addr; } else if (!IN6_IS_ADDR_UNSPECIFIED(&c->ip6.dns_match) && IN6_ARE_ADDR_EQUAL(src, &c->ip6.dns_host) && src_port == 53) { b->ip6h.daddr = c->ip6.addr_seen; b->ip6h.saddr = c->ip6.dns_match; } else if (IN6_IS_ADDR_LOOPBACK(src) || IN6_ARE_ADDR_EQUAL(src, &c->ip6.addr_seen) || IN6_ARE_ADDR_EQUAL(src, &c->ip6.addr)) { b->ip6h.daddr = c->ip6.addr_ll_seen; if (IN6_IS_ADDR_LINKLOCAL(&c->ip6.gw)) b->ip6h.saddr = c->ip6.gw; else b->ip6h.saddr = c->ip6.addr_ll; udp_tap_map[V6][src_port].ts = now->tv_sec; udp_tap_map[V6][src_port].flags |= PORT_LOCAL; if (IN6_IS_ADDR_LOOPBACK(src)) udp_tap_map[V6][src_port].flags |= PORT_LOOPBACK; else udp_tap_map[V6][src_port].flags &= ~PORT_LOOPBACK; if (IN6_ARE_ADDR_EQUAL(src, &c->ip6.addr)) udp_tap_map[V6][src_port].flags |= PORT_GUA; else udp_tap_map[V6][src_port].flags &= ~PORT_GUA; bitmap_set(udp_act[V6][UDP_ACT_TAP], src_port); } else { b->ip6h.daddr = c->ip6.addr_seen; b->ip6h.saddr = b->s_in6.sin6_addr; } b->uh.source = b->s_in6.sin6_port; b->uh.dest = htons(ref.r.p.udp.udp.port); b->uh.len = b->ip6h.payload_len; b->ip6h.hop_limit = IPPROTO_UDP; b->ip6h.version = b->ip6h.nexthdr = b->uh.check = 0; b->uh.check = csum(&b->ip6h, ip_len, 0); b->ip6h.version = 6; b->ip6h.nexthdr = IPPROTO_UDP; b->ip6h.hop_limit = 255; if (c->mode == MODE_PASTA) { /* See udp_sock_fill_data_v4() for the reason behind 'frame' */ void *frame = (char *)b + offsetof(struct udp6_l2_buf_t, eh); if (write(c->fd_tap, frame, sizeof(b->eh) + ip_len) < 0) debug("tap write: %s", strerror(errno)); pcap(frame, sizeof(b->eh) + ip_len); return; } b->vnet_len = htonl(ip_len + sizeof(struct ethhdr)); buf_len = sizeof(uint32_t) + sizeof(struct ethhdr) + ip_len; udp6_l2_iov_tap[n].iov_len = buf_len; /* With bigger messages, qemu closes the connection. */ if (*msg_bufs && *msg_len + buf_len > SHRT_MAX) { mh->msg_iovlen = *msg_bufs; (*msg_idx)++; udp6_l2_mh_tap[*msg_idx].msg_hdr.msg_iov = &udp6_l2_iov_tap[n]; *msg_len = *msg_bufs = 0; } *msg_len += buf_len; (*msg_bufs)++; } /** * udp_sock_handler() - Handle new data from socket * @c: Execution context * @ref: epoll reference * @events: epoll events bitmap * @now: Current timestamp * * #syscalls recvmmsg * #syscalls:passt sendmmsg sendmsg */ void udp_sock_handler(const struct ctx *c, union epoll_ref ref, uint32_t events, const struct timespec *now) { ssize_t n, msg_len = 0, missing = 0; int msg_bufs = 0, msg_i = 0, ret; struct mmsghdr *tap_mmh; struct msghdr *last_mh; unsigned int i; if (events == EPOLLERR) return; if (ref.r.p.udp.udp.splice) { udp_sock_handler_splice(c, ref, events, now); return; } if (ref.r.p.udp.udp.v6) { n = recvmmsg(ref.r.s, udp6_l2_mh_sock, UDP_TAP_FRAMES, 0, NULL); if (n <= 0) return; udp6_l2_mh_tap[0].msg_hdr.msg_iov = &udp6_l2_iov_tap[0]; for (i = 0; i < (unsigned)n; i++) { udp_sock_fill_data_v6(c, i, ref, &msg_i, &msg_bufs, &msg_len, now); } udp6_l2_mh_tap[msg_i].msg_hdr.msg_iovlen = msg_bufs; tap_mmh = udp6_l2_mh_tap; } else { n = recvmmsg(ref.r.s, udp4_l2_mh_sock, UDP_TAP_FRAMES, 0, NULL); if (n <= 0) return; udp6_l2_mh_tap[0].msg_hdr.msg_iov = &udp6_l2_iov_tap[0]; for (i = 0; i < (unsigned)n; i++) { udp_sock_fill_data_v4(c, i, ref, &msg_i, &msg_bufs, &msg_len, now); } udp4_l2_mh_tap[msg_i].msg_hdr.msg_iovlen = msg_bufs; tap_mmh = udp4_l2_mh_tap; } if (c->mode == MODE_PASTA) return; ret = sendmmsg(c->fd_tap, tap_mmh, msg_i + 1, MSG_NOSIGNAL | MSG_DONTWAIT); if (ret <= 0) return; /* If we lose some messages to sendmmsg() here, fine, it's UDP. However, * the last message needs to be delivered completely, otherwise qemu * will fail to reassemble the next message and close the connection. Go * through headers from the last sent message, counting bytes, and, if * and as soon as we see more bytes than sendmmsg() sent, re-send the * rest with a blocking call. * * In pictures, given this example: * * iov #0 iov #1 iov #2 iov #3 * tap_mmh[ret - 1].msg_hdr: .... ...... ..... ...... * tap_mmh[ret - 1].msg_len: 7 .... ... * * when 'msglen' reaches: 10 ^ * and 'missing' below is: 3 --- * * re-send everything from here: ^-- ----- ------ */ last_mh = &tap_mmh[ret - 1].msg_hdr; for (i = 0, msg_len = 0; i < last_mh->msg_iovlen; i++) { if (missing <= 0) { msg_len += last_mh->msg_iov[i].iov_len; missing = msg_len - tap_mmh[ret - 1].msg_len; } if (missing > 0) { uint8_t **iov_base; int first_offset; iov_base = (uint8_t **)&last_mh->msg_iov[i].iov_base; first_offset = last_mh->msg_iov[i].iov_len - missing; *iov_base += first_offset; last_mh->msg_iov[i].iov_len = missing; last_mh->msg_iov = &last_mh->msg_iov[i]; if (sendmsg(c->fd_tap, last_mh, MSG_NOSIGNAL) < 0) debug("UDP: %li bytes to tap missing", missing); *iov_base -= first_offset; break; } } pcapmm(tap_mmh, ret); } /** * udp_tap_handler() - Handle packets from tap * @c: Execution context * @af: Address family, AF_INET or AF_INET6 * @addr: Destination address * @p: Pool of UDP packets, with UDP headers * @now: Current timestamp * * Return: count of consumed packets * * #syscalls sendmmsg */ int udp_tap_handler(struct ctx *c, int af, const void *addr, const struct pool *p, const struct timespec *now) { struct mmsghdr mm[UIO_MAXIOV]; struct iovec m[UIO_MAXIOV]; struct sockaddr_in6 s_in6; struct sockaddr_in s_in; struct sockaddr *sa; int i, s, count = 0; in_port_t src, dst; struct udphdr *uh; socklen_t sl; (void)c; uh = packet_get(p, 0, 0, sizeof(*uh), NULL); if (!uh) return 1; /* The caller already checks that all the messages have the same source * and destination, so we can just take those from the first message. */ src = ntohs(uh->source); dst = ntohs(uh->dest); if (af == AF_INET) { s_in = (struct sockaddr_in) { .sin_family = AF_INET, .sin_port = uh->dest, .sin_addr = *(struct in_addr *)addr, }; sa = (struct sockaddr *)&s_in; sl = sizeof(s_in); if (!(s = udp_tap_map[V4][src].sock)) { union udp_epoll_ref uref = { .udp.port = src }; s = sock_l4(c, AF_INET, IPPROTO_UDP, NULL, NULL, src, uref.u32); if (s < 0) return p->count; udp_tap_map[V4][src].sock = s; bitmap_set(udp_act[V4][UDP_ACT_TAP], src); } udp_tap_map[V4][src].ts = now->tv_sec; if (IN4_ARE_ADDR_EQUAL(&s_in.sin_addr, &c->ip4.gw) && !c->no_map_gw) { if (!(udp_tap_map[V4][dst].flags & PORT_LOCAL) || (udp_tap_map[V4][dst].flags & PORT_LOOPBACK)) s_in.sin_addr.s_addr = htonl(INADDR_LOOPBACK); else s_in.sin_addr = c->ip4.addr_seen; } else if (IN4_ARE_ADDR_EQUAL(&s_in.sin_addr, &c->ip4.dns_match) && ntohs(s_in.sin_port) == 53) { s_in.sin_addr = c->ip4.dns[0]; } } else { s_in6 = (struct sockaddr_in6) { .sin6_family = AF_INET6, .sin6_port = uh->dest, .sin6_addr = *(struct in6_addr *)addr, }; const void *bind_addr = &in6addr_any; sa = (struct sockaddr *)&s_in6; sl = sizeof(s_in6); if (IN6_ARE_ADDR_EQUAL(addr, &c->ip6.gw) && !c->no_map_gw) { if (!(udp_tap_map[V6][dst].flags & PORT_LOCAL) || (udp_tap_map[V6][dst].flags & PORT_LOOPBACK)) s_in6.sin6_addr = in6addr_loopback; else if (udp_tap_map[V6][dst].flags & PORT_GUA) s_in6.sin6_addr = c->ip6.addr; else s_in6.sin6_addr = c->ip6.addr_seen; } else if (IN6_ARE_ADDR_EQUAL(addr, &c->ip6.dns_match) && ntohs(s_in6.sin6_port) == 53) { s_in6.sin6_addr = c->ip6.dns[0]; } else if (IN6_IS_ADDR_LINKLOCAL(&s_in6.sin6_addr)) { bind_addr = &c->ip6.addr_ll; } if (!(s = udp_tap_map[V6][src].sock)) { union udp_epoll_ref uref = { .udp.v6 = 1, .udp.port = src }; s = sock_l4(c, AF_INET6, IPPROTO_UDP, bind_addr, NULL, src, uref.u32); if (s < 0) return p->count; udp_tap_map[V6][src].sock = s; bitmap_set(udp_act[V6][UDP_ACT_TAP], src); } udp_tap_map[V6][src].ts = now->tv_sec; } for (i = 0; i < (int)p->count; i++) { struct udphdr *uh_send; size_t len; uh_send = packet_get(p, i, 0, sizeof(*uh), &len); if (!uh_send) return p->count; mm[i].msg_hdr.msg_name = sa; mm[i].msg_hdr.msg_namelen = sl; if (len) { m[i].iov_base = (char *)(uh_send + 1); m[i].iov_len = len; mm[i].msg_hdr.msg_iov = m + i; mm[i].msg_hdr.msg_iovlen = 1; } else { mm[i].msg_hdr.msg_iov = NULL; mm[i].msg_hdr.msg_iovlen = 0; } mm[i].msg_hdr.msg_control = NULL; mm[i].msg_hdr.msg_controllen = 0; mm[i].msg_hdr.msg_flags = 0; count++; } count = sendmmsg(s, mm, count, MSG_NOSIGNAL); if (count < 0) return 1; return count; } /** * udp_sock_init() - Initialise listening sockets for a given port * @c: Execution context * @ns: In pasta mode, if set, bind with loopback address in namespace * @af: Address family to select a specific IP version, or AF_UNSPEC * @addr: Pointer to address for binding, NULL if not configured * @ifname: Name of interface to bind to, NULL if not configured * @port: Port, host order */ void udp_sock_init(const struct ctx *c, int ns, sa_family_t af, const void *addr, const char *ifname, in_port_t port) { union udp_epoll_ref uref = { .u32 = 0 }; const void *bind_addr; int s; if (ns) { uref.udp.port = (in_port_t)(port + c->udp.fwd_out.f.delta[port]); } else { uref.udp.port = (in_port_t)(port + c->udp.fwd_in.f.delta[port]); } if ((af == AF_INET || af == AF_UNSPEC) && c->ifi4) { if (!addr && c->mode == MODE_PASTA) bind_addr = &c->ip4.addr; else bind_addr = addr; uref.udp.v6 = 0; if (!ns) { uref.udp.splice = 0; s = sock_l4(c, AF_INET, IPPROTO_UDP, bind_addr, ifname, port, uref.u32); udp_tap_map[V4][uref.udp.port].sock = s; if (c->mode == MODE_PASTA) { bind_addr = &(uint32_t){ htonl(INADDR_LOOPBACK) }; uref.udp.splice = uref.udp.orig = true; s = sock_l4(c, AF_INET, IPPROTO_UDP, bind_addr, ifname, port, uref.u32); udp_splice_init[V4][port].sock = s; } } else { uref.udp.splice = uref.udp.orig = uref.udp.ns = true; bind_addr = &(uint32_t){ htonl(INADDR_LOOPBACK) }; s = sock_l4(c, AF_INET, IPPROTO_UDP, bind_addr, ifname, port, uref.u32); udp_splice_ns[V4][port].sock = s; } } if ((af == AF_INET6 || af == AF_UNSPEC) && c->ifi6) { if (!addr && c->mode == MODE_PASTA) bind_addr = &c->ip6.addr; else bind_addr = addr; uref.udp.v6 = 1; if (!ns) { uref.udp.splice = 0; s = sock_l4(c, AF_INET6, IPPROTO_UDP, bind_addr, ifname, port, uref.u32); udp_tap_map[V6][uref.udp.port].sock = s; if (c->mode == MODE_PASTA) { bind_addr = &in6addr_loopback; uref.udp.splice = uref.udp.orig = true; s = sock_l4(c, AF_INET6, IPPROTO_UDP, bind_addr, ifname, port, uref.u32); udp_splice_init[V6][port].sock = s; } } else { bind_addr = &in6addr_loopback; uref.udp.splice = uref.udp.orig = uref.udp.ns = true; s = sock_l4(c, AF_INET6, IPPROTO_UDP, bind_addr, ifname, port, uref.u32); udp_splice_ns[V6][port].sock = s; } } } /** * udp_sock_init_ns() - Bind sockets in namespace for inbound connections * @arg: Execution context * * Return: 0 */ int udp_sock_init_ns(void *arg) { struct ctx *c = (struct ctx *)arg; unsigned dst; if (ns_enter(c)) return 0; for (dst = 0; dst < NUM_PORTS; dst++) { if (!bitmap_isset(c->udp.fwd_out.f.map, dst)) continue; udp_sock_init(c, 1, AF_UNSPEC, NULL, NULL, dst); } return 0; } /** * udp_splice_iov_init() - Set up buffers and descriptors for recvmmsg/sendmmsg */ static void udp_splice_iov_init(void) { struct mmsghdr *h; struct iovec *iov; int i; for (i = 0, h = udp_mmh_recv; i < UDP_MAX_FRAMES; i++, h++) { struct msghdr *mh = &h->msg_hdr; if (!i) { mh->msg_name = &udp_splice_namebuf; mh->msg_namelen = sizeof(udp_splice_namebuf); } mh->msg_iov = &udp_iov_recv[i]; mh->msg_iovlen = 1; } for (i = 0, iov = udp_iov_recv; i < UDP_MAX_FRAMES; i++, iov++) { iov->iov_base = udp_splice_buf[i]; iov->iov_len = sizeof(udp_splice_buf[i]); } for (i = 0, h = udp_mmh_sendto; i < UDP_MAX_FRAMES; i++, h++) { struct msghdr *mh = &h->msg_hdr; mh->msg_name = &udp_splice_namebuf; mh->msg_namelen = sizeof(udp_splice_namebuf); mh->msg_iov = &udp_iov_sendto[i]; mh->msg_iovlen = 1; } for (i = 0, iov = udp_iov_sendto; i < UDP_MAX_FRAMES; i++, iov++) iov->iov_base = udp_splice_buf[i]; } /** * udp_init() - Initialise per-socket data, and sockets in namespace * @c: Execution context * * Return: 0 */ int udp_init(struct ctx *c) { if (c->ifi4) udp_sock4_iov_init(); if (c->ifi6) udp_sock6_iov_init(); udp_invert_portmap(&c->udp.fwd_in); udp_invert_portmap(&c->udp.fwd_out); if (c->mode == MODE_PASTA) { udp_splice_iov_init(); NS_CALL(udp_sock_init_ns, c); } return 0; } /** * udp_timer_one() - Handler for timed events on one port * @c: Execution context * @v6: Set for IPv6 connections * @type: Socket type * @port: Port number, host order * @ts: Timestamp from caller */ static void udp_timer_one(struct ctx *c, int v6, enum udp_act_type type, in_port_t port, const struct timespec *ts) { struct udp_splice_port *sp; struct udp_tap_port *tp; int s = -1; switch (type) { case UDP_ACT_TAP: tp = &udp_tap_map[v6 ? V6 : V4][port]; if (ts->tv_sec - tp->ts > UDP_CONN_TIMEOUT) { s = tp->sock; tp->flags = 0; } break; case UDP_ACT_SPLICE_INIT: sp = &udp_splice_init[v6 ? V6 : V4][port]; if (ts->tv_sec - sp->ts > UDP_CONN_TIMEOUT) s = sp->sock; break; case UDP_ACT_SPLICE_NS: sp = &udp_splice_ns[v6 ? V6 : V4][port]; if (ts->tv_sec - sp->ts > UDP_CONN_TIMEOUT) s = sp->sock; break; default: return; } if (s > 0) { epoll_ctl(c->epollfd, EPOLL_CTL_DEL, s, NULL); close(s); bitmap_clear(udp_act[v6 ? V6 : V4][type], port); } } /** * udp_timer() - Scan activity bitmaps for ports with associated timed events * @c: Execution context * @ts: Timestamp from caller */ void udp_timer(struct ctx *c, const struct timespec *ts) { int n, t, v6 = 0; unsigned int i; long *word, tmp; if (!c->ifi4) v6 = 1; v6: for (t = 0; t < UDP_ACT_TYPE_MAX; t++) { word = (long *)udp_act[v6 ? V6 : V4][t]; for (i = 0; i < ARRAY_SIZE(udp_act[0][0]); i += sizeof(long), word++) { tmp = *word; while ((n = ffsl(tmp))) { tmp &= ~(1UL << (n - 1)); udp_timer_one(c, v6, t, i * 8 + n - 1, ts); } } } if (!v6 && c->ifi6) { v6 = 1; goto v6; } }