| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement a packet abstraction providing boundary and size checks
based on packet descriptors: packets stored in a buffer can be queued
into a pool (without storage of its own), and data can be retrieved
referring to an index in the pool, specifying offset and length.
Checks ensure data is not read outside the boundaries of buffer and
descriptors, and that packets added to a pool are within the buffer
range with valid offset and indices.
This implies a wider rework: usage of the "queueing" part of the
abstraction mostly affects tap_handler_{passt,pasta}() functions and
their callees, while the "fetching" part affects all the guest or tap
facing implementations: TCP, UDP, ICMP, ARP, NDP, DHCP and DHCPv6
handlers.
Suggested-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
This should never happen, but there are no formal guarantees: ensure
socket numbers are below SOCKET_MAX.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
There's no value in keeping a separate timestamp for activity and for
aging of local binds, given that they have the same timeout. Reduce
that to a single timestamp, with a flag indicating the local bind.
Also use flags instead of separate int fields for loopback and
configured unicast address usage as source address.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
...it became too hard to follow: split it off to
udp_sock_fill_data_v{4,6}.
While at it, use IN6_ARE_ADDR_EQUAL(a, b), courtesy of netinet/in.h,
instead of open-coded memcmp().
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
It's already implied by the fact they don't have "l2" in their
names, and dropping it improves readability a bit.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
Not functionally needed, but gcc versions 7 to 9 (at least) will
issue a warning otherwise.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In pasta mode, when we get data from sockets and write it as single
frames to the tap device, we batch receive operations considerably,
and then (conceptually) split the data in many smaller writes.
It looked like an obvious choice, but performance is actually better
if we receive data in many small frame-sized recvmsg()/recvmmsg().
The syscall overhead with the previous behaviour, observed by perf,
comes predominantly from write operations, but receiving data in
shorter chunks probably improves cache locality by a considerable
amount.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Likely for testing purposes only: allow connections from host to
guest or namespace using, as connection target, the configured,
possibly global unicast address.
In this case, we have to map the destination address to a link-local
address, and for port-based tracked responses, the source address
needs to be again the unicast address: not loopback, not link-local.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For compatibility with libslirp/slirp4netns users: introduce a
mechanism to map, in the UDP routines, an address facing guest or
namespace to the first IPv4 or IPv6 address resulting from
configuration as resolver. This can be enabled with the new
--dns-forward option.
This implies that sourcing and using DNS addresses and search lists,
passed via command line or read from /etc/resolv.conf, is not bound
anymore to DHCP/DHCPv6/NDP usage: for example, pasta users might just
want to use addresses from /etc/resolv.conf as mapping target, while
not passing DNS options via DHCP.
Reflect this in all the involved code paths by differentiating
DHCP/DHCPv6/NDP usage from DNS configuration per se, and in the new
options --dhcp-dns, --dhcp-search for pasta, and --no-dhcp-dns,
--no-dhcp-search for passt.
This should be the last bit to enable substantial compatibility
between slirp4netns.sh and slirp4netns(1): pass the --dns-forward
option from the script too.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To reach (at least) a conceptually equivalent security level as
implemented by --enable-sandbox in slirp4netns, we need to create a
new mount namespace and pivot_root() into a new (empty) mountpoint, so
that passt and pasta can't access any filesystem resource after
initialisation.
While at it, also detach IPC, PID (only for passt, to prevent
vulnerabilities based on the knowledge of a target PID), and UTS
namespaces.
With this approach, if we apply the seccomp filters right after the
configuration step, the number of allowed syscalls grows further. To
prevent this, defer the application of seccomp policies after the
initialisation phase, before the main loop, that's where we expect bad
things to happen, potentially. This way, we get back to 22 allowed
syscalls for passt and 34 for pasta, on x86_64.
While at it, move #syscalls notes to specific code paths wherever it
conceptually makes sense.
We have to open all the file handles we'll ever need before
sandboxing:
- the packet capture file can only be opened once, drop instance
numbers from the default path and use the (pre-sandbox) PID instead
- /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection
of bound ports in pasta mode, are now opened only once, before
sandboxing, and their handles are stored in the execution context
- the UNIX domain socket for passt is also bound only once, before
sandboxing: to reject clients after the first one, instead of
closing the listening socket, keep it open, accept and immediately
discard new connection if we already have a valid one
Clarify the (unchanged) behaviour for --netns-only in the man page.
To actually make passt and pasta processes run in a separate PID
namespace, we need to unshare(CLONE_NEWPID) before forking to
background (if configured to do so). Introduce a small daemon()
implementation, __daemon(), that additionally saves the PID file
before forking. While running in foreground, the process itself can't
move to a new PID namespace (a process can't change the notion of its
own PID): mention that in the man page.
For some reason, fork() in a detached PID namespace causes SIGTERM
and SIGQUIT to be ignored, even if the handler is still reported as
SIG_DFL: add a signal handler that just exits.
We can now drop most of the pasta_child_handler() implementation,
that took care of terminating all processes running in the same
namespace, if pasta started a shell: the shell itself is now the
init process in that namespace, and all children will terminate
once the init process exits.
Issuing 'echo $$' in a detached PID namespace won't return the
actual namespace PID as seen from the init namespace: adapt
demo and test setup scripts to reflect that.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
Bitmap manipulating functions would otherwise refer to inconsistent
sets of bits on big-endian architectures. While at it, fix up a
couple of casts.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
This is the only remaining Linux-specific include -- drop it to avoid
clang-tidy warnings and to make code more portable.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
...mostly false positives, but a number of very relevant ones too,
in tcp_get_sndbuf(), tcp_conn_from_tap(), and siphash PREAMBLE().
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
| |
With the new UDP_TAP_FRAMES value, the binary size grows considerably.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
The issue with a higher UDP_TAP_FRAMES was actually coming from a
payload size the guest couldn't digest. Fix that, and bump
UDP_TAP_FRAMES back to 128.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unions and structs, you all have names now.
Take the chance to enable bugprone-reserved-identifier,
cert-dcl37-c, and cert-dcl51-cpp checkers in clang-tidy.
Provide a ffsl() weak declaration using gcc built-in.
Start reordering includes, but that's not enough for the
llvm-include-order checker yet.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This shouldn't happen on any sane configuration, but I just met an
example of that: the default IPv6 gateway on the host is configured
with a global unicast address, we use that as source for RA, DHCPv6
replies, and the guest ignores it. Same later on if we talk TCP or
UDP and the guest has no idea where that address comes from.
Use our link-local address in case the gateway address is global.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
Most are just about style and form, but a few were actually
serious mistakes (NDP-related).
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
| |
All false positives so far.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
| |
A mix of unchecked return values, a missing permission mask for
open(2) with O_CREAT, and some false positives from
-Wstringop-overflow and -Wmaybe-uninitialized.
Reported-by: Martin Hauke <mardnh@gmx.de>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The 'ts' field is a timestamp so assigning the socket file descriptor is
incorrect. There is no actual bug because the current time is assigned
just a few lines later:
udp_tap_map[V4][src].sock = s;
udp_tap_map[V4][src].ts = s;
^^^^^^^^^^^ bogus ^^^^^^^^^^
bitmap_set(udp_act[V4][UDP_ACT_TAP], src);
}
udp_tap_map[V4][src].ts = now->tv_sec;
^^^^^^^^^^^^^^^ correct ^^^^^^^^^^^^^^
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
List of allowed syscalls comes from comments in the form:
#syscalls <list>
for syscalls needed both in passt and pasta mode, and:
#syscalls:pasta <list>
#syscalls:passt <list>
for syscalls specifically needed in pasta or passt mode only.
seccomp.sh builds a list of BPF statements from those comments,
prefixed by a binary search tree to keep lookup fast.
While at it, clean up a bit the Makefile using wildcards.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on a patch from Giuseppe Scrivano, this adds the ability to:
- specify paths and names of target namespaces to join, instead of
a PID, also for user namespaces, with --userns
- request to join or create a network namespace only, without
entering or creating a user namespace, with --netns-only
- specify the base directory for netns mountpoints, with --nsrun-dir
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
[sbrivio: reworked logic to actually join the given namespaces when
they're not created, implemented --netns-only and --nsrun-dir,
updated pasta demo script and man page]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Until now, messages would be passed to protocol handlers in a single
batch only if they happened to be dequeued in a row. Packets
interleaved between different connections would result in multiple
calls to the same protocol handler for a single connection.
Instead, keep track of incoming packet descriptors, arrange them in
sequences, and call protocol handlers only as we completely sorted
input messages in batches.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
For some reason, this measurably improves performance with qemu and
virtio-net.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
Similarly to the decrease in TCP_TAP_FRAMES, this improves fairness,
with a very small impact on performance.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
We set the length while processing messges, but the starting address is
pre-initialised.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
| |
c->addr4_seen is stored in network order.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
This went lost in a recent rework: if the guest wants to connect
directly to the host, it can use the address of the default gateway.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similarly to the handling introduced by commit "tcp: Proper error
handling for sendmmsg() to UNIX domain socket" for TCP, we need to
deal with partial sendmmsg() failures for UDP as well.
Here, we can lose messages, but we need to make sure that the last
message is delivered completely, otherwise qemu will fail to
reassemble further packets. For UDP, this is somewhat complicated
by the fact that one message might include multiple datagrams, and
we need to respect message boundaries: go through headers, and
calculate what we need to re-send, if anything.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
| |
...instead of just 127.0.0.1.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
Traffic with loopback source address will be forwarded to the direct
loopback connection in the namespace, and the tap interface is used
for the rest.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Provide an AVX2-based function using compiler intrinsics for
TCP/IP-style checksums. The load/unpack/add idea and implementation
is largely based on code from BESS (the Berkeley Extensible Software
Switch) licensed as 3-Clause BSD, with a number of modifications to
further decrease pipeline stalls and to minimise cache pollution.
This speeds up considerably data paths from sockets to tap
interfaces, decreasing overhead for checksum computation, with
16-64KiB packet buffers, from approximately 11% to 7%. The rest is
just syscalls at this point.
While at it, provide convenience targets in the Makefile for avx2,
avx2_debug, and debug targets -- these simply add target-specific
CFLAGS to the build.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Allow to bind IPv4 and IPv6 ports to tap, namespace or init separately.
Port numbers of TCP ports that are bound in a namespace are also bound
for UDP for convenience (e.g. iperf3), and IPv4 ports are always bound
if the corresponding IPv6 port is bound (socket might not have the
IPV6_V6ONLY option set). This will also be configurable later.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
Packets are received directly onto pre-cooked, static buffers
for IPv4 (with partial checksum pre-calculation) and IPv6 frames,
with pre-filled Ethernet addresses and, partially, IP headers,
and sent out from the same buffers with sendmmsg(), for both
passt and pasta (non-local traffic only) modes.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
This is in preparation for scatter-gather IO on the UDP receive path:
save a getsockname() syscall by setting a flag if we get the numbering
of all bound sockets in a strict sequence (expected, in practice) and
repurpose the tap buffer to be also a socket receive buffer, passing
it down to protocol handlers.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
...on a second thought, this won't really help with veth, and
actually causes a significant overhead as we get EPOLLERR whenever
another process is tapping on the traffic.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Avoid a bunch of syscalls on forwarding paths by:
- storing minimum and maximum file descriptor numbers for each
protocol, fall back to SO_PROTOCOL query only on overlaps
- allocating a larger receive buffer -- this can result in more
coalesced packets than sendmmsg() can take (UIO_MAXIOV, i.e. 1024),
so make sure we don't exceed that within a single call to protocol
tap handlers
- nesting the handling loop in tap_handler() in the receive loop,
so that we have better chances of filling our receive buffer in
fewer calls
- skipping the recvfrom() in the UDP handler on EPOLLERR -- there's
nothing to be done in that case
and while at it:
- restore the 20ms timer interval for periodic (TCP) events, I
accidentally changed that to 100ms in an earlier commit
- attempt using SO_ZEROCOPY for UDP -- if it's not available,
sendmmsg() will succeed anyway
- fix the handling of the status code from sendmmsg(), if it fails,
we'll try to discard the first message, hence return 1 from the
UDP handler
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
This is symmetric with tap operation and addressing model, and
allows again to reach the guest behind the tap interface by
contacting the local address.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
Receive packets in batches from AF_UNIX, check if they can be sent
with a single syscall, and batch them up with sendmmsg() in case.
A bit rudimentary, currently only implemented for UDP, but it seems
to work.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|