| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
tcp_defer_handler() performs a potentially expensive linear scan of the
connection table. So, to mitigate the cost of that we skip if if we're not
under at least moderate pressure: either 30% of available connections or
30% (estimated) of available fds used.
But, the calculation for this has been broken since it was introduced: we
calculate "max_conns" based on c->tcp.conn_count, not TCP_MAX_CONNS,
meaning we only exit early if conn_count is less than 30% of itself, i.e.
never.
If that calculation is "corrected" to be based on TCP_MAX_CONNS, it
completely tanks the TCP CRR times for passt - from ~60ms to >1000ms on my
laptop. My guess is that this is because in the case of many short lived
connections, we're letting the table become much fuller before compacting
it. That means that other places which perform a table scan now have to
do much, much more.
For the time being, simply remove the tests, since they're not doing
anything useful. We can reintroduce them more carefully if we see a need
for them.
This also removes the only user of c->tcp.splice_conn_count, so that can
be removed as well.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Because packets sent on the tap interface will always be going to the
guest/namespace, we more-or-less know what address they'll be going to. So
we pre-fill this destination address in our header buffers for IPv4. We
can't do the same for IPv6 because we could need either the global or
link-local address for the guest. In future we're going to want more
flexibility for the destination address, so this pre-filling will get in
the way.
Change the flow so we always fill in the IPv4 destination address for each
packet, rather than prefilling it from proto_update_l2_buf(). In fact for
TCP we already redundantly filled the destination for each packet anyway.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The tap code passes the IPv4 or IPv6 destination address of packets it
receives to the protocol specific code. Currently that protocol code
doesn't use the source address, but we want it to in future. So, in
preparation, pass the IPv4/IPv6 source address of tap packets to those
functions as well.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
tcp_sock_handler() handles both listening TCP sockets, and connected TCP
sockets, but what it needs to do in those cases has essentially nothing in
common. Therefore, give listening sockets their own epoll_type value and
dispatch directly to their own handler from the top level. Furthermore,
the two handlers need essentially entirely different information from the
reference: we re-(ab)used the index field in the tcp_epoll_ref to indicate
the port for the listening socket, but that's not the same meaning. So,
switch listening sockets to their own reference type which we can lay out
as we please. That lets us remove the listen and outbound fields from the
normal (connected) tcp_epoll_ref, reducing it to just the connection table
index.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
tcp_sock_handler() actually handles several different types of fd events.
This includes timerfds that aren't sockets at all. The handling of these
has essentially nothing in common with the other cases. So, give the
TCP timers there own epoll_type value and dispatch directly to their
handler. This also means we can remove the timer field from tcp_epoll_ref,
the information it encoded is now implicit in the epoll_type value.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
union epoll_ref has a deeply nested set of structs and unions to let us
subdivide it into the various different fields we want. This means that
referencing elements can involve an awkward long string of intermediate
fields.
Using C11 anonymous structs and unions lets us do this less clumsily.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In practical terms, passt doesn't benefit from the additional
protection offered by the AGPL over the GPL, because it's not
suitable to be executed over a computer network.
Further, restricting the distribution under the version 3 of the GPL
wouldn't provide any practical advantage either, as long as the passt
codebase is concerned, and might cause unnecessary compatibility
dilemmas.
Change licensing terms to the GNU General Public License Version 2,
or any later version, with written permission from all current and
past contributors, namely: myself, David Gibson, Laine Stump, Andrea
Bolognani, Paul Holzinger, Richard W.M. Jones, Chris Kuhn, Florian
Weimer, Giuseppe Scrivano, Stefan Hajnoczi, and Vasiliy Ulyanov.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
| |
...and, given that I keep getting this wrong, add a convenience
macro, MAX_FROM_BITS().
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
passt supports ranges of forwarded ports as well as 'all' for TCP and
UDP, so it might be convenient to proceed if we fail to bind only
some of the desired ports.
But if we fail to bind even a single port for a given specification,
we're clearly, unexpectedly, conflicting with another network
service. In that case, report failure and exit.
Reported-by: Yalan Zhang <yalzhang@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
tcp_splice.c has some explicit extern declarations to access the
socket pools. This is pretty dangerous - if we changed the type of
these variables in tcp.c, we'd have tcp.c and tcp_splice.c using the
same memory in different ways with no compiler error. So, move the
extern declarations to tcp_conn.h so they're visible to both tcp.c and
tcp_splice.c, but not the rest of pasta.
In fact the pools for the guest namespace are necessarily only used by
tcp_splice.c - we have no sockets on the guest side if we're not
splicing. So move those declarations and the functions that deal
exclusively with them to tcp_splice.c
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This bit in the TCP specific epoll reference indicates whether the
connection is IPv6 or IPv4. However the sites which refer to it are
already calling accept() which (optionally) returns an address for the
remote end of the connection. We can use the sa_family field in that
address to determine the connection type independent of the epoll
reference.
This does have a cost: for the spliced case, it means we now need to get
that address from accept() which introduces an extran copy_to_user().
However, in future we want to allow handling IPv4 connectons through IPv6
sockets, which means we won't be able to determine the IP version at the
time we create the listening socket and epoll reference. So, at some point
we'll have to pay this cost anyway.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently the epoll reference for tcp sockets includes a bit indicating
whether the socket maps to a spliced connection. However, the reference
also has the index of the connection structure which also indicates whether
it is spliced. We can therefore avoid the splice bit in the epoll_ref by
unifying the first part of the non-spliced and spliced handlers where we
look up the connection state.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
tcp_sock_init*() can create either sockets listening on the host, or in
the pasta network namespace (with @ns==1). There are, however, a number
of differences in how these two cases work in practice though. "ns"
sockets are only used in pasta mode, and they always lead to spliced
connections only. The functions are also only ever called in "ns" mode
with a NULL address and interface name, and it doesn't really make sense
for them to be called any other way.
Later changes will introduce further differences in behaviour between these
two cases, so it makes more sense to use separate functions for creating
the ns listening sockets than the regular external/host listening sockets.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently spliced and non-spliced connections are stored in completely
separate tables, so there are completely independent limits on the number
of spliced and non-spliced connections. This is a bit counter-intuitive.
More importantly, the fact that the tables are separate prevents us from
unifying some other logic between the two cases. So, merge these two
tables into one, using the 'c.spliced' common field to distinguish between
them when necessary.
For now we keep a common limit of 128k connections, whether they're spliced
or non-spliced, which means we save memory overall. If necessary we could
increase this to a 256k or higher total, which would cost memory but give
some more flexibility.
For now, the code paths which need to step through all extant connections
are still separate for the two cases, just skipping over entries which
aren't for them. We'll improve that in later patches.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
Presumably it meant something in the past, but it's no longer used.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We recently corrected some errors handling the endianness of IPv4
addresses. These are very easy errors to make since although we mostly
store them in network endianness, we sometimes need to manipulate them in
host endianness.
To reduce the chances of making such mistakes again, change to always using
a (struct in_addr) instead of a bare in_addr_t or uint32_t to store network
endian addresses. This makes it harder to accidentally do arithmetic or
comparisons on such addresses as if they were host endian.
We introduce a number of IN4_IS_ADDR_*() helpers to make it easier to
directly work with struct in_addr values. This has the additional benefit
of making the IPv4 and IPv6 paths more visually similar.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In pasta mode, when we receive a new inbound connection, we need to
select a socket that was created in the namespace to proceed and
connect() it to its final destination.
The existing condition might pick a wrong socket, though, if the
destination port is remapped, because we'll check the bitmap of
inbound ports using the remapped port (stored in the epoll reference)
as index, and not the original port.
Instead of using the port bitmap for this purpose, store this
information in the epoll reference itself, by adding a new 'outbound'
bit, that's set if the listening socket was created the namespace,
and unset otherwise.
Then, use this bit to pick a socket on the right side.
Suggested-by: David Gibson <david@gibson.dropbear.id.au>
Fixes: 33482d5bf293 ("passt: Add PASTA mode, major rework")
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since kernel version 5.7, commit c427bfec18f2 ("net: core: enable
SO_BINDTODEVICE for non-root users"), we can bind sockets to
interfaces, if they haven't been bound yet (as in bind()).
Introduce an optional interface specification for forwarded ports,
prefixed by %, that can be passed together with an address.
Reported use case: running local services that use ports we want
to have externally forwarded:
https://github.com/containers/podman/issues/14425
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
|
|
|
|
|
|
|
|
|
|
| |
Now that we've delayed initialization of the UDP specific "reverse" map
until udp_init(), the only difference between the various 'remap' functions
used in conf_ports() is which array they target. So, simplify by open
coding the logic into conf_ports() with a pointer to the correct mapping
array.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The configuration for how to forward ports in and out of the guest/ns is
divided between several different variables. For each connect direction
and protocol we have a mode in the udp/tcp context structure, a bitmap
of which ports to forward also in the context structure and an array of
deltas to apply if the outward facing and inward facing port numbers are
different. This last is a separate global variable, rather than being in
the context structure, for no particular reason. UDP also requires an
additional array which has the reverse mapping used for return packets.
Consolidate these into a re-used substructure in the context structure.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
enum conf_port_type is local to conf.c and is used to track the port
forwarding mode during configuration. We don't keep it around in the
context structure, however the 'init_detect_ports' and 'ns_detect_ports'
fields in the context are based solely on this. Rather than changing
encoding, just include the forwarding mode into the context structure.
Move the type definition to a new port_fwd.h, which is kind of trivial at
the moment but will have more stuff later.
While we're there, "conf_port_type" doesn't really convey that this enum is
describing how port forwarding is configured. Rename it to port_fwd_mode.
The variables (now fields) of this type also have mildly confusing names
since it's not immediately obvious whether 'ns' and 'init' refer to the
source or destination of the packets. Use "in" (host to guest / init to
ns) and "out" (guest to host / ns to init) instead.
This has the added bonus that we no longer have locals 'udp_init' and
'tcp_init' which shadow global functions.
In addition, add a typedef 'port_fwd_map' for a bitmap of each port number,
which is used in several places.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reported by David but also by Coverity (CWE-119):
In conf_ports: Out-of-bounds access to a buffer
...not in practice, because the allocation size is rounded up
anyway, but not nice either.
Reported-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This feature is available in slirp4netns but was missing in passt and
pasta.
Given that we don't do dynamic memory allocation, we need to bind
sockets while parsing port configuration. This means we need to
process all other options first, as they might affect addressing and
IP version support. It also implies a minor rework of how TCP and UDP
implementations bind sockets.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement a packet abstraction providing boundary and size checks
based on packet descriptors: packets stored in a buffer can be queued
into a pool (without storage of its own), and data can be retrieved
referring to an index in the pool, specifying offset and length.
Checks ensure data is not read outside the boundaries of buffer and
descriptors, and that packets added to a pool are within the buffer
range with valid offset and indices.
This implies a wider rework: usage of the "queueing" part of the
abstraction mostly affects tap_handler_{passt,pasta}() functions and
their callees, while the "fetching" part affects all the guest or tap
facing implementations: TCP, UDP, ICMP, ARP, NDP, DHCP and DHCPv6
handlers.
Suggested-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
...by:
- storing the chained-hash next connection pointer as numeric
reference rather than as pointer
- storing the MSS as 14-bit value, and rounding it
- using only the effective amount of bits needed to store the hash
bucket number
- explicitly limiting window scaling factors to 4-bit values
(maximum factor is 14, from RFC 7323)
- scaling SO_SNDBUF values, and using a 8-bit representation for
the duplicate ACK sequence
- keeping window values unscaled, as received and sent
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With a lot of concurrent connections, the bitmap scan approach is
not really sustainable.
Switch to per-connection timerfd timers, set based on events and on
two new flags, ACK_FROM_TAP_DUE and ACK_TO_TAP_DUE. Timers are added
to the common epoll list, and implement the existing timeouts.
While at it, drop the CONN_ prefix from flag names, otherwise they
get quite long, and fix the logic to decide if a connection has a
local, possibly unreachable endpoint: we shouldn't go through the
rest of tcp_conn_from_tap() if we reset the connection due to a
successful bind(2), and we'll get EACCES if the port number is low.
Suggested by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Using events and flags instead of states makes the implementation
much more straightforward: actions are mostly centered on events
that occurred on the connection rather than states.
An example is given by the ESTABLISHED_SOCK_FIN_SENT and
FIN_WAIT_1_SOCK_FIN abominations: we don't actually care about
which side started closing the connection to handle closing of
connection halves.
Split out the spliced implementation, as it has very little in
common with the "regular" TCP path.
Refactor things here and there to improve clarity. Add helpers
to trace where resets and flag settings come from.
No functional changes intended.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unions and structs, you all have names now.
Take the chance to enable bugprone-reserved-identifier,
cert-dcl37-c, and cert-dcl51-cpp checkers in clang-tidy.
Provide a ffsl() weak declaration using gcc built-in.
Start reordering includes, but that's not enough for the
llvm-include-order checker yet.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
Detect missing tcpi_snd_wnd in struct tcp_info at build time,
otherwise build fails with a pre-5.3 linux/tcp.h header.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
Most are just about style and form, but a few were actually
serious mistakes (NDP-related).
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
SPDX tags don't replace license files. Some notices were missing and
some tags were not according to the SPDX specification, too.
Now reuse --lint from the REUSE tool (https://reuse.software/) passes.
Reported-by: Martin Hauke <mardnh@gmx.de>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
...using pre-cooked buffers, just like we do with other segments.
While at it, remove some code duplication by having separate
functions for updating ACK sequence and window, and for filling in
buffer headers.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
Detecting bound ports at start-up time isn't terribly useful: do this
periodically instead, if configured.
This is only implemented for TCP at the moment, UDP is somewhat more
complicated: leave a TODO there.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
...similarly to what was done for UDP. Quick performance test with
32KiB buffers, host to VM:
$ iperf3 -c 192.0.2.2 -N
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 8.47 GBytes 7.27 Gbits/sec 0 sender
[ 5] 0.00-10.00 sec 8.45 GBytes 7.26 Gbits/sec receiver
$ iperf3 -c 2a01:598:88ba:a056:271f:473a:c0d9:abc1
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 8.43 GBytes 7.24 Gbits/sec 0 sender
[ 5] 0.00-10.00 sec 8.41 GBytes 7.22 Gbits/sec receiver
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Allow to bind IPv4 and IPv6 ports to tap, namespace or init separately.
Port numbers of TCP ports that are bound in a namespace are also bound
for UDP for convenience (e.g. iperf3), and IPv4 ports are always bound
if the corresponding IPv6 port is bound (socket might not have the
IPV6_V6ONLY option set). This will also be configurable later.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
This is in preparation for scatter-gather IO on the UDP receive path:
save a getsockname() syscall by setting a flag if we get the numbering
of all bound sockets in a strict sequence (expected, in practice) and
repurpose the tap buffer to be also a socket receive buffer, passing
it down to protocol handlers.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
...the rest is reshuffling existing macros to use the bits we need in
TCP code.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Avoid a bunch of syscalls on forwarding paths by:
- storing minimum and maximum file descriptor numbers for each
protocol, fall back to SO_PROTOCOL query only on overlaps
- allocating a larger receive buffer -- this can result in more
coalesced packets than sendmmsg() can take (UIO_MAXIOV, i.e. 1024),
so make sure we don't exceed that within a single call to protocol
tap handlers
- nesting the handling loop in tap_handler() in the receive loop,
so that we have better chances of filling our receive buffer in
fewer calls
- skipping the recvfrom() in the UDP handler on EPOLLERR -- there's
nothing to be done in that case
and while at it:
- restore the 20ms timer interval for periodic (TCP) events, I
accidentally changed that to 100ms in an earlier commit
- attempt using SO_ZEROCOPY for UDP -- if it's not available,
sendmmsg() will succeed anyway
- fix the handling of the status code from sendmmsg(), if it fails,
we'll try to discard the first message, hence return 1 from the
UDP handler
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
Receive packets in batches from AF_UNIX, check if they can be sent
with a single syscall, and batch them up with sendmmsg() in case.
A bit rudimentary, currently only implemented for UDP, but it seems
to work.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
We don't need to keep small data as static variables, move the only
small variable we have so far to the new struct.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|