| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
...at the moment, just for consistency with packet.h, icmp.h,
tcp.h and udp.h.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The existing behaviour is not really practical: an automated agent in
charge of starting both qemu and passt would need to fork itself to
start passt, because passt won't fork to background until qemu
connects, and the agent needs to unblock to start qemu.
Instead of waiting for a connection to daemonise, do it right away as
soon as a socket is available: that can be considered an initialised
state already.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
SPDX tags don't replace license files. Some notices were missing and
some tags were not according to the SPDX specification, too.
Now reuse --lint from the REUSE tool (https://reuse.software/) passes.
Reported-by: Martin Hauke <mardnh@gmx.de>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
| |
This isn't optional: TCP streams must carry a unique, hard-to-guess,
non-zero label for each direction. Linux, probably among others,
will otherwise refuse to associate packets in a given stream to the
same connection.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|