| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The POSTAMBLE macro implements the finalisation steps of SipHash. It
relies on some variables in the environment, including returning the final
hash value that way. That isn't great hygeine.
In addition the PREAMBLE macro takes a length parameter which is used only
to initialize the 'b' value that's not used until the finalisation and is
also sometimes modified in a non-obvious way by the callers.
The 'b' value is always composed from the total length of the hash input
plus up to 7 bytes of "tail" data - that is the remainder of the hash input
after a multiple of 8 bytes has been consumed.
Simplify all this by replacing the POSTAMBLE macro with a siphash_final()
function which takes the length and tail data as parameters and returns the
final hash value.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have macros or inlines for a number of common operations in the siphash
functions. However, in a number of places we still open code feeding
another 64-bits of data into the hash function: an xor, followed by 2
rounds of shuffling, followed by another xor.
Implement an inline function for this, which results in somewhat shortened
code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
| |
The SIPROUND(n) macro implements n rounds of SipHash shuffling. It relies
on 'v' and '__i' variables being available in the context it's used in
which isn't great hygeine. Replace it with an inline function instead.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some of the siphas_*b() functions return 64-bit results, others 32-bit
results, with no obvious pattern. siphash_32b() also appears to do this
incorrectly - taking the 64-bit hash value and simply returning it
truncated, rather than folding the two halves together.
Since SipHash proper is defined to give a 64-bit hash, make all of them
return 64-bit results. In the one caller which needs a 32-bit value,
tcp_seq_init() do the fold down to 32-bits ourselves.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In practical terms, passt doesn't benefit from the additional
protection offered by the AGPL over the GPL, because it's not
suitable to be executed over a computer network.
Further, restricting the distribution under the version 3 of the GPL
wouldn't provide any practical advantage either, as long as the passt
codebase is concerned, and might cause unnecessary compatibility
dilemmas.
Change licensing terms to the GNU General Public License Version 2,
or any later version, with written permission from all current and
past contributors, namely: myself, David Gibson, Laine Stump, Andrea
Bolognani, Paul Holzinger, Richard W.M. Jones, Chris Kuhn, Florian
Weimer, Giuseppe Scrivano, Stefan Hajnoczi, and Vasiliy Ulyanov.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recently, commit 4ddbcb9c0c55 ("tcp: Disable optimisations
for tcp_hash()") worked around yet another issue we hit with gcc 12
and '-flto -O2': some stores affecting the input data to siphash_20b()
were omitted altogether, and tcp_hash() wouldn't get the correct hash
for incoming connections.
Digging further into this revealed that, at least according to gcc's
interpretation of C99 aliasing rules, passing pointers to functions
with different types compared to the effective type of the object
(for example, a uint8_t pointer to an anonymous struct, as it happens
in tcp_hash()), doesn't guarantee that stores are not reordered
across the function call.
This means that, in general, our checksum and hash functions might
not see parts of input data that was intended to be provided by
callers.
Not even switching from uint8_t to character types, which should be
appropriate here, according to C99 (ISO/IEC 9899, TC3, draft N1256),
section 6.5, "Expressions", paragraph 7:
An object shall have its stored value accessed only by an lvalue
expression that has one of the following types:
[...]
— a character type.
does the trick. I guess this is also subject to interpretation:
casting passed pointers to character types, and then using those as
different types, might still violate (dubious) aliasing rules.
Disable gcc strict aliasing rules for potentially affected functions,
which, in turn, disables gcc's Type-Based Alias Analysis (TBAA)
optimisations based on those function arguments.
Drop the existing workarounds. Also the (seemingly?) bogus
'maybe-uninitialized' warning on the tcp_tap_handler() > tcp_hash() >
siphash_20b() path goes away with -fno-strict-aliasing on
siphash_20b().
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
tcp_seq_init() has separate paths for IPv4 and IPv6 addresses, which means
we will calculate different sequence numbers for IPv4 and equivalent
IPv4-mapped IPv6 addresses.
Change it to treat these the same by always converting the input address
into an inany_addr representation and use that to calculate the sequence
number.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the tcp_conn structure, we represent the address with an inany_addr
which could be an IPv4 or IPv6 address. However, we have different paths
which will calculate different hashes for IPv4 and equivalent IPv4-mapped
IPv6 addresses. This will cause problems for some future changes.
Make the hash function work the same for these two cases, by taking an
inany_addr directly. Since this represents IPv4 and IPv4-mapped IPv6
addresses the same way, it will trivially hash the same for both cases.
Callers are changed to construct an inany_addr from whatever they have.
Some of that will be elided in later changes.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
We have a couple of functions that are unused (for now) by design.
Although at least one has a flag so that gcc doesn't warn, cppcheck has its
own warnings about this. Add specific inline suppressions for these rather
than a blanket suppression in the Makefile.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
| |
...mostly false positives, but a number of very relevant ones too,
in tcp_get_sndbuf(), tcp_conn_from_tap(), and siphash PREAMBLE().
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
| |
A mix of unchecked return values, a missing permission mask for
open(2) with O_CREAT, and some false positives from
-Wstringop-overflow and -Wmaybe-uninitialized.
Reported-by: Martin Hauke <mardnh@gmx.de>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
SPDX tags don't replace license files. Some notices were missing and
some tags were not according to the SPDX specification, too.
Now reuse --lint from the REUSE tool (https://reuse.software/) passes.
Reported-by: Martin Hauke <mardnh@gmx.de>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|
|
Implement siphash routines for initial TCP sequence numbers (12 bytes
input for IPv4, 36 bytes input for IPv6), and while at it, also
functions we'll use later on for hash table indices and TCP timestamp
offsets (with 8, 20, 32 bytes of input).
Use these to set the initial sequence number, according to RFC 6528,
for connections originating either from the tap device or from
sockets.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
|