aboutgitcodebugslistschat
path: root/ndp.c
Commit message (Collapse)AuthorAgeFilesLines
* passt: Add PASTA mode, major reworkStefano Brivio2021-07-171-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
* ndp: Always answer neighbour solicitations with the requested target addressStefano Brivio2021-05-211-3/+10
| | | | | | | | The guest might try to resolve hosts other than the main host namespace (i.e. the gateway) -- just recycle the target address from the request and resolve it to the MAC address of the gateway. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
* dhcp, ndp, dhcpv6: Support for multiple DNS servers, search listStefano Brivio2021-05-211-8/+46
| | | | | | | | | | | Add support for a variable amount of DNS servers, including zero, from /etc/resolv.conf, in DHCP, NDP and DHCPv6 implementations. Introduce support for domain search list for DHCP (RFC 3397), NDP (RFC 8106), and DHCPv6 (RFC 3646), also sourced from /etc/resolv.conf. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
* passt: Introduce a DHCPv6 serverStefano Brivio2021-04-131-1/+2
| | | | | | | | | | | | This implementation, similarly to the IPv4 DHCP one, hands out a single address, which is the same as the upstream address for the host. This avoids the need for address translation as long as the client runs a DHCPv6 client. The NDP "Managed" flag is now set in Router Advertisements. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
* passt: Run in background, add message logging with severitiesStefano Brivio2021-03-181-2/+2
| | | | Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
* passt: Assorted fixes from "fresh eyes" reviewStefano Brivio2021-02-211-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A bunch of fixes not worth single commits at this stage, notably: - make buffer, length parameter ordering consistent in ARP, DHCP, NDP handlers - strict checking of buffer, message and option length in DHCP handler (a malicious client could have easily crashed it) - set up forwarding for IPv4 and IPv6, and masquerading with nft for IPv4, from demo script - get rid of separate slow and fast timers, we don't save any overhead that way - stricter checking of buffer lengths as passed to tap handlers - proper dequeuing from qemu socket back-end: I accidentally trashed messages that were bundled up together in a single tap read operation -- the length header tells us what's the size of the next frame, but there's no apparent limit to the number of messages we get with one single receive - rework some bits of the TCP state machine, now passive and active connection closes appear to be robust -- introduce a new FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag from socket - streamline TCP option parsing routine - track TCP state changes to stderr (this is temporary, proper debugging and syslogging support pending) - observe that multiplying a number by four might very well change its value, and this happens to be the case for the data offset from the TCP header as we check if it's the same as the total length to find out if it's a duplicated ACK segment - recent estimates suggest that the duration of a millisecond is closer to a million nanoseconds than a thousand of them, this trend is now reflected into the timespec_diff_ms() convenience routine Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
* passt: New design and implementation with native Layer 4 socketsStefano Brivio2021-02-161-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
* passt: Add IPv6 and NDP support, further fixes for IPv4 CTStefano Brivio2021-02-161-0/+133
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>