// SPDX-License-Identifier: GPL-2.0-or-later
/* PASST - Plug A Simple Socket Transport
* for qemu/UNIX domain socket mode
*
* PASTA - Pack A Subtle Tap Abstraction
* for network namespace/tap device mode
*
* udp.c - UDP L2-L4 translation routines
*
* Copyright (c) 2020-2021 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*/
/**
* DOC: Theory of Operation
*
*
* For UDP, a reduced version of port-based connection tracking is implemented
* with two purposes:
* - binding ephemeral ports when they're used as source port by the guest, so
* that replies on those ports can be forwarded back to the guest, with a
* fixed timeout for this binding
* - packets received from the local host get their source changed to a local
* address (gateway address) so that they can be forwarded to the guest, and
* packets sent as replies by the guest need their destination address to
* be changed back to the address of the local host. This is dynamic to allow
* connections from the gateway as well, and uses the same fixed 180s timeout
*
* Sockets for bound ports are created at initialisation time, one set for IPv4
* and one for IPv6.
*
* Packets are forwarded back and forth, by prepending and stripping UDP headers
* in the obvious way, with no port translation.
*
* In PASTA mode, the L2-L4 translation is skipped for connections to ports
* bound between namespaces using the loopback interface, messages are directly
* transferred between L4 sockets instead. These are called spliced connections
* for consistency with the TCP implementation, but the splice() syscall isn't
* actually used as it wouldn't make sense for datagram-based connections: a
* pair of recvmmsg() and sendmmsg() deals with this case.
*
* The connection tracking for PASTA mode is slightly complicated by the absence
* of actual connections, see struct udp_splice_port, and these examples:
*
* - from init to namespace:
*
* - forward direction: 127.0.0.1:5000 -> 127.0.0.1:80 in init from socket s,
* with epoll reference: index = 80, splice = 1, orig = 1, ns = 0
* - if udp_splice_ns[V4][5000].sock:
* - send packet to udp_splice_ns[V4][5000].sock, with destination port
* 80
* - otherwise:
* - create new socket udp_splice_ns[V4][5000].sock
* - bind in namespace to 127.0.0.1:5000
* - add to epoll with reference: index = 5000, splice = 1, orig = 0,
* ns = 1
* - update udp_splice_init[V4][80].ts and udp_splice_ns[V4][5000].ts with
* current time
*
* - reverse direction: 127.0.0.1:80 -> 127.0.0.1:5000 in namespace socket s,
* having epoll reference: index = 5000, splice = 1, orig = 0, ns = 1
* - if udp_splice_init[V4][80].sock:
* - send to udp_splice_init[V4][80].sock, with destination port 5000
* - update udp_splice_init[V4][80].ts and udp_splice_ns[V4][5000].ts with
* current time
* - otherwise, discard
*
* - from namespace to init:
*
* - forward direction: 127.0.0.1:2000 -> 127.0.0.1:22 in namespace from
* socket s, with epoll reference: index = 22, splice = 1, orig = 1, ns = 1
* - if udp4_splice_init[V4][2000].sock:
* - send packet to udp_splice_init[V4][2000].sock, with destination
* port 22
* - otherwise:
* - create new socket udp_splice_init[V4][2000].sock
* - bind in init to 127.0.0.1:2000
* - add to epoll with reference: index = 2000, splice = 1, orig = 0,
* ns = 0
* - update udp_splice_ns[V4][22].ts and udp_splice_init[V4][2000].ts with
* current time
*
* - reverse direction: 127.0.0.1:22 -> 127.0.0.1:2000 in init from socket s,
* having epoll reference: index = 2000, splice = 1, orig = 0, ns = 0
* - if udp_splice_ns[V4][22].sock:
* - send to udp_splice_ns[V4][22].sock, with destination port 2000
* - update udp_splice_ns[V4][22].ts and udp_splice_init[V4][2000].ts with
* current time
* - otherwise, discard
*/
#include <sched.h>
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <limits.h>
#include <assert.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <time.h>
#include "checksum.h"
#include "util.h"
#include "ip.h"
#include "siphash.h"
#include "inany.h"
#include "passt.h"
#include "tap.h"
#include "pcap.h"
#include "log.h"
#define UDP_CONN_TIMEOUT 180 /* s, timeout for ephemeral or local bind */
#define UDP_MAX_FRAMES 32 /* max # of frames to receive at once */
/**
* struct udp_tap_port - Port tracking based on tap-facing source port
* @sock: Socket bound to source port used as index
* @flags: Flags for local bind, loopback address/unicast address as source
* @ts: Activity timestamp from tap, used for socket aging
*/
struct udp_tap_port {
int sock;
uint8_t flags;
#define PORT_LOCAL BIT(0)
#define PORT_LOOPBACK BIT(1)
#define PORT_GUA BIT(2)
time_t ts;
};
/**
* struct udp_splice_port - Bound socket for spliced communication
* @sock: Socket bound to index port
* @ts: Activity timestamp
*/
struct udp_splice_port {
int sock;
time_t ts;
};
/* Port tracking, arrays indexed by packet source port (host order) */
static struct udp_tap_port udp_tap_map [IP_VERSIONS][NUM_PORTS];
/* "Spliced" sockets indexed by bound port (host order) */
static struct udp_splice_port udp_splice_ns [IP_VERSIONS][NUM_PORTS];
static struct udp_splice_port udp_splice_init[IP_VERSIONS][NUM_PORTS];
enum udp_act_type {
UDP_ACT_TAP,
UDP_ACT_SPLICE_NS,
UDP_ACT_SPLICE_INIT,
UDP_ACT_TYPE_MAX,
};
/* Activity-based aging for bindings */
static uint8_t udp_act[IP_VERSIONS][UDP_ACT_TYPE_MAX][DIV_ROUND_UP(NUM_PORTS, 8)];
/* Static buffers */
/**
* udp4_l2_buf_t - Pre-cooked IPv4 packet buffers for tap connections
* @s_in: Source socket address, filled in by recvmmsg()
* @taph: Tap-level headers (partially pre-filled)
* @iph: Pre-filled IP header (except for tot_len and saddr)
* @uh: Headroom for UDP header
* @data: Storage for UDP payload
*/
static struct udp4_l2_buf_t {
struct sockaddr_in s_in;
struct tap_hdr taph;
struct iphdr iph;
struct udphdr uh;
uint8_t data[USHRT_MAX -
(sizeof(struct iphdr) + sizeof(struct udphdr))];
} __attribute__ ((packed, aligned(__alignof__(unsigned int))))
udp4_l2_buf[UDP_MAX_FRAMES];
/**
* udp6_l2_buf_t - Pre-cooked IPv6 packet buffers for tap connections
* @s_in6: Source socket address, filled in by recvmmsg()
* @taph: Tap-level headers (partially pre-filled)
* @ip6h: Pre-filled IP header (except for payload_len and addresses)
* @uh: Headroom for UDP header
* @data: Storage for UDP payload
*/
struct udp6_l2_buf_t {
struct sockaddr_in6 s_in6;
#ifdef __AVX2__
/* Align ip6h to 32-byte boundary. */
uint8_t pad[64 - (sizeof(struct sockaddr_in6) + sizeof(struct ethhdr) +
sizeof(uint32_t))];
#endif
struct tap_hdr taph;
struct ipv6hdr ip6h;
struct udphdr uh;
uint8_t data[USHRT_MAX -
(sizeof(struct ipv6hdr) + sizeof(struct udphdr))];
#ifdef __AVX2__
} __attribute__ ((packed, aligned(32)))
#else
} __attribute__ ((packed, aligned(__alignof__(unsigned int))))
#endif
udp6_l2_buf[UDP_MAX_FRAMES];
/* recvmmsg()/sendmmsg() data for tap */
static struct iovec udp4_l2_iov_sock [UDP_MAX_FRAMES];
static struct iovec udp6_l2_iov_sock [UDP_MAX_FRAMES];
static struct iovec udp4_l2_iov_tap [UDP_MAX_FRAMES];
static struct iovec udp6_l2_iov_tap [UDP_MAX_FRAMES];
static struct mmsghdr udp4_l2_mh_sock [UDP_MAX_FRAMES];
static struct mmsghdr udp6_l2_mh_sock [UDP_MAX_FRAMES];
/* recvmmsg()/sendmmsg() data for "spliced" connections */
static struct iovec udp4_iov_splice [UDP_MAX_FRAMES];
static struct iovec udp6_iov_splice [UDP_MAX_FRAMES];
static struct sockaddr_in udp4_localname = {
.sin_family = AF_INET,
.sin_addr = IN4ADDR_LOOPBACK_INIT,
};
static struct sockaddr_in6 udp6_localname = {
.sin6_family = AF_INET6,
.sin6_addr = IN6ADDR_LOOPBACK_INIT,
};
static struct mmsghdr udp4_mh_splice [UDP_MAX_FRAMES];
static struct mmsghdr udp6_mh_splice [UDP_MAX_FRAMES];
/**
* udp_portmap_clear() - Clear UDP port map before configuration
*/
void udp_portmap_clear(void)
{
unsigned i;
for (i = 0; i < NUM_PORTS; i++) {
udp_tap_map[V4][i].sock = udp_tap_map[V6][i].sock = -1;
udp_splice_ns[V4][i].sock = udp_splice_ns[V6][i].sock = -1;
udp_splice_init[V4][i].sock = udp_splice_init[V6][i].sock = -1;
}
}
/**
* udp_invert_portmap() - Compute reverse port translations for return packets
* @fwd: Port forwarding configuration to compute reverse map for
*/
static void udp_invert_portmap(struct udp_fwd_ports *fwd)
{
unsigned int i;
static_assert(ARRAY_SIZE(fwd->f.delta) == ARRAY_SIZE(fwd->rdelta),
"Forward and reverse delta arrays must have same size");
for (i = 0; i < ARRAY_SIZE(fwd->f.delta); i++) {
in_port_t delta = fwd->f.delta[i];
in_port_t rport = i + delta;
if (delta)
fwd->rdelta[rport] = NUM_PORTS - delta;
}
}
/**
* udp_update_l2_buf() - Update L2 buffers with Ethernet and IPv4 addresses
* @eth_d: Ethernet destination address, NULL if unchanged
* @eth_s: Ethernet source address, NULL if unchanged
*/
void udp_update_l2_buf(const unsigned char *eth_d, const unsigned char *eth_s)
{
int i;
for (i = 0; i < UDP_MAX_FRAMES; i++) {
struct udp4_l2_buf_t *b4 = &udp4_l2_buf[i];
struct udp6_l2_buf_t *b6 = &udp6_l2_buf[i];
eth_update_mac(&b4->taph.eh, eth_d, eth_s);
eth_update_mac(&b6->taph.eh, eth_d, eth_s);
}
}
/**
* udp_sock4_iov_init_one() - Initialise a scatter-gather L2 buffer for IPv4
* @c: Execution context
* @i: Index of buffer to initialize
*/
static void udp_sock4_iov_init_one(const struct ctx *c, size_t i)
{
struct msghdr *mh = &udp4_l2_mh_sock[i].msg_hdr;
struct udp4_l2_buf_t *buf = &udp4_l2_buf[i];
struct iovec *siov = &udp4_l2_iov_sock[i];
struct iovec *tiov = &udp4_l2_iov_tap[i];
*buf = (struct udp4_l2_buf_t) {
.taph = TAP_HDR_INIT(ETH_P_IP),
.iph = L2_BUF_IP4_INIT(IPPROTO_UDP)
};
siov->iov_base = buf->data;
siov->iov_len = sizeof(buf->data);
mh->msg_name = &buf->s_in;
mh->msg_namelen = sizeof(buf->s_in);
mh->msg_iov = siov;
mh->msg_iovlen = 1;
tiov->iov_base = tap_iov_base(c, &buf->taph);
}
/**
* udp_sock6_iov_init_one() - Initialise a scatter-gather L2 buffer for IPv6
* @c: Execution context
* @i: Index of buffer to initialize
*/
static void udp_sock6_iov_init_one(const struct ctx *c, size_t i)
{
struct msghdr *mh = &udp6_l2_mh_sock[i].msg_hdr;
struct udp6_l2_buf_t *buf = &udp6_l2_buf[i];
struct iovec *siov = &udp6_l2_iov_sock[i];
struct iovec *tiov = &udp6_l2_iov_tap[i];
*buf = (struct udp6_l2_buf_t) {
.taph = TAP_HDR_INIT(ETH_P_IPV6),
.ip6h = L2_BUF_IP6_INIT(IPPROTO_UDP)
};
siov->iov_base = buf->data;
siov->iov_len = sizeof(buf->data);
mh->msg_name = &buf->s_in6;
mh->msg_namelen = sizeof(buf->s_in6);
mh->msg_iov = siov;
mh->msg_iovlen = 1;
tiov->iov_base = tap_iov_base(c, &buf->taph);
}
/**
* udp_sock_iov_init() - Initialise scatter-gather L2 buffers
* @c: Execution context
*/
static void udp_sock_iov_init(const struct ctx *c)
{
size_t i;
for (i = 0; i < UDP_MAX_FRAMES; i++) {
if (c->ifi4)
udp_sock4_iov_init_one(c, i);
if (c->ifi6)
udp_sock6_iov_init_one(c, i);
}
}
/**
* udp_splice_new() - Create and prepare socket for "spliced" binding
* @c: Execution context
* @v6: Set for IPv6 sockets
* @src: Source port of original connection, host order
* @ns: Does the splice originate in the ns or not
*
* Return: prepared socket, negative error code on failure
*
* #syscalls:pasta getsockname
*/
int udp_splice_new(const struct ctx *c, int v6, in_port_t src, bool ns)
{
struct epoll_event ev = { .events = EPOLLIN | EPOLLRDHUP | EPOLLHUP };
union epoll_ref ref = { .type = EPOLL_TYPE_UDP,
.udp = { .splice = true, .v6 = v6, .port = src }
};
struct udp_splice_port *sp;
int act, s;
if (ns) {
ref.udp.pif = PIF_SPLICE;
sp = &udp_splice_ns[v6 ? V6 : V4][src];
act = UDP_ACT_SPLICE_NS;
} else {
ref.udp.pif = PIF_HOST;
sp = &udp_splice_init[v6 ? V6 : V4][src];
act = UDP_ACT_SPLICE_INIT;
}
s = socket(v6 ? AF_INET6 : AF_INET, SOCK_DGRAM | SOCK_NONBLOCK,
IPPROTO_UDP);
if (s > FD_REF_MAX) {
close(s);
return -EIO;
}
if (s < 0)
return s;
ref.fd = s;
if (v6) {
struct sockaddr_in6 addr6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(src),
.sin6_addr = IN6ADDR_LOOPBACK_INIT,
};
if (bind(s, (struct sockaddr *)&addr6, sizeof(addr6)))
goto fail;
} else {
struct sockaddr_in addr4 = {
.sin_family = AF_INET,
.sin_port = htons(src),
.sin_addr = IN4ADDR_LOOPBACK_INIT,
};
if (bind(s, (struct sockaddr *)&addr4, sizeof(addr4)))
goto fail;
}
sp->sock = s;
bitmap_set(udp_act[v6 ? V6 : V4][act], src);
ev.data.u64 = ref.u64;
epoll_ctl(c->epollfd, EPOLL_CTL_ADD, s, &ev);
return s;
fail:
close(s);
return -1;
}
/**
* struct udp_splice_new_ns_arg - Arguments for udp_splice_new_ns()
* @c: Execution context
* @v6: Set for IPv6
* @src: Source port of originating datagram, host order
* @dst: Destination port of originating datagram, host order
* @s: Newly created socket or negative error code
*/
struct udp_splice_new_ns_arg {
const struct ctx *c;
int v6;
in_port_t src;
int s;
};
/**
* udp_splice_new_ns() - Enter namespace and call udp_splice_new()
* @arg: See struct udp_splice_new_ns_arg
*
* Return: 0
*/
static int udp_splice_new_ns(void *arg)
{
struct udp_splice_new_ns_arg *a;
a = (struct udp_splice_new_ns_arg *)arg;
ns_enter(a->c);
a->s = udp_splice_new(a->c, a->v6, a->src, true);
return 0;
}
/**
* udp_mmh_splice_port() - Is source address of message suitable for splicing?
* @v6: Is @sa a sockaddr_in6 (otherwise sockaddr_in)?
* @mmh: mmsghdr of incoming message
*
* Return: if @sa refers to localhost (127.0.0.1 or ::1) the port from
* @sa in host order, otherwise -1.
*/
static int udp_mmh_splice_port(bool v6, const struct mmsghdr *mmh)
{
const struct sockaddr_in6 *sa6 = mmh->msg_hdr.msg_name;
const struct sockaddr_in *sa4 = mmh->msg_hdr.msg_name;
if (v6 && IN6_IS_ADDR_LOOPBACK(&sa6->sin6_addr))
return ntohs(sa6->sin6_port);
if (!v6 && IN4_IS_ADDR_LOOPBACK(&sa4->sin_addr))
return ntohs(sa4->sin_port);
return -1;
}
/**
* udp_splice_sendfrom() - Send datagrams from given port to given port
* @c: Execution context
* @start: Index of first datagram in udp[46]_l2_buf
* @n: Number of datagrams to send
* @src: Datagrams will be sent from this port (on origin side)
* @dst: Datagrams will be send to this port (on destination side)
* @from_pif: pif from which the packet originated
* @v6: Send as IPv6?
* @allow_new: If true create sending socket if needed, if false discard
* if no sending socket is available
* @now: Timestamp
*/
static void udp_splice_sendfrom(const struct ctx *c, unsigned start, unsigned n,
in_port_t src, in_port_t dst, uint8_t from_pif,
bool v6, bool allow_new,
const struct timespec *now)
{
struct mmsghdr *mmh_recv, *mmh_send;
unsigned int i;
int s;
if (v6) {
mmh_recv = udp6_l2_mh_sock;
mmh_send = udp6_mh_splice;
} else {
mmh_recv = udp4_l2_mh_sock;
mmh_send = udp4_mh_splice;
}
if (from_pif == PIF_SPLICE) {
src += c->udp.fwd_in.rdelta[src];
s = udp_splice_init[v6][src].sock;
if (s < 0 && allow_new)
s = udp_splice_new(c, v6, src, false);
if (s < 0)
return;
udp_splice_ns[v6][dst].ts = now->tv_sec;
udp_splice_init[v6][src].ts = now->tv_sec;
} else {
ASSERT(from_pif == PIF_HOST);
src += c->udp.fwd_out.rdelta[src];
s = udp_splice_ns[v6][src].sock;
if (s < 0 && allow_new) {
struct udp_splice_new_ns_arg arg = {
c, v6, src, -1,
};
NS_CALL(udp_splice_new_ns, &arg);
s = arg.s;
}
if (s < 0)
return;
udp_splice_init[v6][dst].ts = now->tv_sec;
udp_splice_ns[v6][src].ts = now->tv_sec;
}
for (i = start; i < start + n; i++)
mmh_send[i].msg_hdr.msg_iov->iov_len = mmh_recv[i].msg_len;
sendmmsg(s, mmh_send + start, n, MSG_NOSIGNAL);
}
/**
* udp_update_hdr4() - Update headers for one IPv4 datagram
* @c: Execution context
* @b: Pointer to udp4_l2_buf to update
* @dstport: Destination port number
* @datalen: Length of UDP payload
* @now: Current timestamp
*
* Return: size of tap frame with headers
*/
static size_t udp_update_hdr4(const struct ctx *c, struct udp4_l2_buf_t *b,
in_port_t dstport, size_t datalen,
const struct timespec *now)
{
const struct in_addr *src;
in_port_t srcport;
size_t ip_len;
ip_len = datalen + sizeof(b->iph) + sizeof(b->uh);
b->iph.tot_len = htons(ip_len);
b->iph.daddr = c->ip4.addr_seen.s_addr;
src = &b->s_in.sin_addr;
srcport = ntohs(b->s_in.sin_port);
if (!IN4_IS_ADDR_UNSPECIFIED(&c->ip4.dns_match) &&
IN4_ARE_ADDR_EQUAL(src, &c->ip4.dns_host) && srcport == 53) {
src = &c->ip4.dns_match;
} else if (IN4_IS_ADDR_LOOPBACK(src) ||
IN4_ARE_ADDR_EQUAL(src, &c->ip4.addr_seen)) {
udp_tap_map[V4][srcport].ts = now->tv_sec;
udp_tap_map[V4][srcport].flags |= PORT_LOCAL;
if (IN4_IS_ADDR_LOOPBACK(src))
udp_tap_map[V4][srcport].flags |= PORT_LOOPBACK;
else
udp_tap_map[V4][srcport].flags &= ~PORT_LOOPBACK;
bitmap_set(udp_act[V4][UDP_ACT_TAP], srcport);
src = &c->ip4.gw;
}
b->iph.saddr = src->s_addr;
b->iph.check = csum_ip4_header(b->iph.tot_len, IPPROTO_UDP,
*src, c->ip4.addr_seen);
b->uh.source = b->s_in.sin_port;
b->uh.dest = htons(dstport);
b->uh.len = htons(datalen + sizeof(b->uh));
return tap_iov_len(c, &b->taph, ip_len);
}
/**
* udp_update_hdr6() - Update headers for one IPv6 datagram
* @c: Execution context
* @b: Pointer to udp6_l2_buf to update
* @dstport: Destination port number
* @datalen: Length of UDP payload
* @now: Current timestamp
*
* Return: size of tap frame with headers
*/
static size_t udp_update_hdr6(const struct ctx *c, struct udp6_l2_buf_t *b,
in_port_t dstport, size_t datalen,
const struct timespec *now)
{
const struct in6_addr *src, *dst;
uint16_t payload_len;
in_port_t srcport;
size_t ip_len;
dst = &c->ip6.addr_seen;
src = &b->s_in6.sin6_addr;
srcport = ntohs(b->s_in6.sin6_port);
ip_len = datalen + sizeof(b->ip6h) + sizeof(b->uh);
payload_len = datalen + sizeof(b->uh);
b->ip6h.payload_len = htons(payload_len);
if (IN6_IS_ADDR_LINKLOCAL(src)) {
dst = &c->ip6.addr_ll_seen;
} else if (!IN6_IS_ADDR_UNSPECIFIED(&c->ip6.dns_match) &&
IN6_ARE_ADDR_EQUAL(src, &c->ip6.dns_host) &&
srcport == 53) {
src = &c->ip6.dns_match;
} else if (IN6_IS_ADDR_LOOPBACK(src) ||
IN6_ARE_ADDR_EQUAL(src, &c->ip6.addr_seen) ||
IN6_ARE_ADDR_EQUAL(src, &c->ip6.addr)) {
udp_tap_map[V6][srcport].ts = now->tv_sec;
udp_tap_map[V6][srcport].flags |= PORT_LOCAL;
if (IN6_IS_ADDR_LOOPBACK(src))
udp_tap_map[V6][srcport].flags |= PORT_LOOPBACK;
else
udp_tap_map[V6][srcport].flags &= ~PORT_LOOPBACK;
if (IN6_ARE_ADDR_EQUAL(src, &c->ip6.addr))
udp_tap_map[V6][srcport].flags |= PORT_GUA;
else
udp_tap_map[V6][srcport].flags &= ~PORT_GUA;
bitmap_set(udp_act[V6][UDP_ACT_TAP], srcport);
dst = &c->ip6.addr_ll_seen;
if (IN6_IS_ADDR_LINKLOCAL(&c->ip6.gw))
src = &c->ip6.gw;
else
src = &c->ip6.addr_ll;
}
b->ip6h.daddr = *dst;
b->ip6h.saddr = *src;
b->ip6h.version = 6;
b->ip6h.nexthdr = IPPROTO_UDP;
b->ip6h.hop_limit = 255;
b->uh.source = b->s_in6.sin6_port;
b->uh.dest = htons(dstport);
b->uh.len = b->ip6h.payload_len;
b->uh.check = 0;
b->uh.check = csum(&b->uh, payload_len,
proto_ipv6_header_psum(payload_len, IPPROTO_UDP,
src, dst));
return tap_iov_len(c, &b->taph, ip_len);
}
/**
* udp_tap_send() - Prepare UDP datagrams and send to tap interface
* @c: Execution context
* @start: Index of first datagram in udp[46]_l2_buf pool
* @n: Number of datagrams to send
* @dstport: Destination port number
* @v6: True if using IPv6
* @now: Current timestamp
*
* Return: size of tap frame with headers
*/
static void udp_tap_send(const struct ctx *c,
unsigned int start, unsigned int n,
in_port_t dstport, bool v6, const struct timespec *now)
{
struct iovec *tap_iov;
unsigned int i;
if (v6)
tap_iov = udp6_l2_iov_tap;
else
tap_iov = udp4_l2_iov_tap;
for (i = start; i < start + n; i++) {
size_t buf_len;
if (v6)
buf_len = udp_update_hdr6(c, &udp6_l2_buf[i], dstport,
udp6_l2_mh_sock[i].msg_len, now);
else
buf_len = udp_update_hdr4(c, &udp4_l2_buf[i], dstport,
udp4_l2_mh_sock[i].msg_len, now);
tap_iov[i].iov_len = buf_len;
}
tap_send_frames(c, tap_iov + start, n);
}
/**
* udp_sock_handler() - Handle new data from socket
* @c: Execution context
* @ref: epoll reference
* @events: epoll events bitmap
* @now: Current timestamp
*
* #syscalls recvmmsg
*/
void udp_sock_handler(const struct ctx *c, union epoll_ref ref, uint32_t events,
const struct timespec *now)
{
/* For not entirely clear reasons (data locality?) pasta gets
* better throughput if we receive tap datagrams one at a
* atime. For small splice datagrams throughput is slightly
* better if we do batch, but it's slightly worse for large
* splice datagrams. Since we don't know before we receive
* whether we'll use tap or splice, always go one at a time
* for pasta mode.
*/
ssize_t n = (c->mode == MODE_PASST ? UDP_MAX_FRAMES : 1);
in_port_t dstport = ref.udp.port;
bool v6 = ref.udp.v6;
struct mmsghdr *mmh_recv;
int i, m;
if (c->no_udp || !(events & EPOLLIN))
return;
if (ref.udp.pif == PIF_SPLICE)
dstport += c->udp.fwd_out.f.delta[dstport];
else if (ref.udp.pif == PIF_HOST)
dstport += c->udp.fwd_in.f.delta[dstport];
if (v6) {
mmh_recv = udp6_l2_mh_sock;
udp6_localname.sin6_port = htons(dstport);
} else {
mmh_recv = udp4_l2_mh_sock;
udp4_localname.sin_port = htons(dstport);
}
n = recvmmsg(ref.fd, mmh_recv, n, 0, NULL);
if (n <= 0)
return;
for (i = 0; i < n; i += m) {
int splicefrom = -1;
m = n;
if (ref.udp.splice) {
splicefrom = udp_mmh_splice_port(v6, mmh_recv + i);
for (m = 1; i + m < n; m++) {
int p;
p = udp_mmh_splice_port(v6, mmh_recv + i + m);
if (p != splicefrom)
break;
}
}
if (splicefrom >= 0)
udp_splice_sendfrom(c, i, m, splicefrom, dstport,
ref.udp.pif, v6, ref.udp.orig, now);
else
udp_tap_send(c, i, m, dstport, v6, now);
}
}
/**
* udp_tap_handler() - Handle packets from tap
* @c: Execution context
* @pif: pif on which the packet is arriving
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address
* @daddr: Destination address
* @p: Pool of UDP packets, with UDP headers
* @idx: Index of first packet to process
* @now: Current timestamp
*
* Return: count of consumed packets
*
* #syscalls sendmmsg
*/
int udp_tap_handler(struct ctx *c, uint8_t pif,
sa_family_t af, const void *saddr, const void *daddr,
const struct pool *p, int idx, const struct timespec *now)
{
struct mmsghdr mm[UIO_MAXIOV];
struct iovec m[UIO_MAXIOV];
struct sockaddr_in6 s_in6;
struct sockaddr_in s_in;
const struct udphdr *uh;
struct sockaddr *sa;
int i, s, count = 0;
in_port_t src, dst;
socklen_t sl;
(void)c;
(void)saddr;
(void)pif;
uh = packet_get(p, idx, 0, sizeof(*uh), NULL);
if (!uh)
return 1;
/* The caller already checks that all the messages have the same source
* and destination, so we can just take those from the first message.
*/
src = ntohs(uh->source);
dst = ntohs(uh->dest);
if (af == AF_INET) {
s_in = (struct sockaddr_in) {
.sin_family = AF_INET,
.sin_port = uh->dest,
.sin_addr = *(struct in_addr *)daddr,
};
sa = (struct sockaddr *)&s_in;
sl = sizeof(s_in);
if (IN4_ARE_ADDR_EQUAL(&s_in.sin_addr, &c->ip4.dns_match) &&
ntohs(s_in.sin_port) == 53) {
s_in.sin_addr = c->ip4.dns_host;
} else if (IN4_ARE_ADDR_EQUAL(&s_in.sin_addr, &c->ip4.gw) &&
!c->no_map_gw) {
if (!(udp_tap_map[V4][dst].flags & PORT_LOCAL) ||
(udp_tap_map[V4][dst].flags & PORT_LOOPBACK))
s_in.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
else
s_in.sin_addr = c->ip4.addr_seen;
}
debug("UDP from tap src=%hu dst=%hu, s=%d",
src, dst, udp_tap_map[V4][src].sock);
if ((s = udp_tap_map[V4][src].sock) < 0) {
struct in_addr bind_addr = IN4ADDR_ANY_INIT;
union udp_epoll_ref uref = {
.port = src,
.pif = PIF_HOST,
};
const char *bind_if = NULL;
if (!IN4_IS_ADDR_LOOPBACK(&s_in.sin_addr))
bind_if = c->ip4.ifname_out;
if (!IN4_IS_ADDR_LOOPBACK(&s_in.sin_addr))
bind_addr = c->ip4.addr_out;
s = sock_l4(c, AF_INET, IPPROTO_UDP, &bind_addr,
bind_if, src, uref.u32);
if (s < 0)
return p->count - idx;
udp_tap_map[V4][src].sock = s;
bitmap_set(udp_act[V4][UDP_ACT_TAP], src);
}
udp_tap_map[V4][src].ts = now->tv_sec;
} else {
s_in6 = (struct sockaddr_in6) {
.sin6_family = AF_INET6,
.sin6_port = uh->dest,
.sin6_addr = *(struct in6_addr *)daddr,
};
const struct in6_addr *bind_addr = &in6addr_any;
sa = (struct sockaddr *)&s_in6;
sl = sizeof(s_in6);
if (IN6_ARE_ADDR_EQUAL(daddr, &c->ip6.dns_match) &&
ntohs(s_in6.sin6_port) == 53) {
s_in6.sin6_addr = c->ip6.dns_host;
} else if (IN6_ARE_ADDR_EQUAL(daddr, &c->ip6.gw) &&
!c->no_map_gw) {
if (!(udp_tap_map[V6][dst].flags & PORT_LOCAL) ||
(udp_tap_map[V6][dst].flags & PORT_LOOPBACK))
s_in6.sin6_addr = in6addr_loopback;
else if (udp_tap_map[V6][dst].flags & PORT_GUA)
s_in6.sin6_addr = c->ip6.addr;
else
s_in6.sin6_addr = c->ip6.addr_seen;
} else if (IN6_IS_ADDR_LINKLOCAL(&s_in6.sin6_addr)) {
bind_addr = &c->ip6.addr_ll;
}
if ((s = udp_tap_map[V6][src].sock) < 0) {
union udp_epoll_ref uref = {
.v6 = 1,
.port = src,
.pif = PIF_HOST,
};
const char *bind_if = NULL;
if (!IN6_IS_ADDR_LOOPBACK(&s_in6.sin6_addr))
bind_if = c->ip6.ifname_out;
if (!IN6_IS_ADDR_LOOPBACK(&s_in6.sin6_addr) &&
!IN6_IS_ADDR_LINKLOCAL(&s_in6.sin6_addr))
bind_addr = &c->ip6.addr_out;
s = sock_l4(c, AF_INET6, IPPROTO_UDP, bind_addr,
bind_if, src, uref.u32);
if (s < 0)
return p->count - idx;
udp_tap_map[V6][src].sock = s;
bitmap_set(udp_act[V6][UDP_ACT_TAP], src);
}
udp_tap_map[V6][src].ts = now->tv_sec;
}
for (i = 0; i < (int)p->count - idx; i++) {
struct udphdr *uh_send;
size_t len;
uh_send = packet_get(p, idx + i, 0, sizeof(*uh), &len);
if (!uh_send)
return p->count - idx;
mm[i].msg_hdr.msg_name = sa;
mm[i].msg_hdr.msg_namelen = sl;
if (len) {
m[i].iov_base = (char *)(uh_send + 1);
m[i].iov_len = len;
mm[i].msg_hdr.msg_iov = m + i;
mm[i].msg_hdr.msg_iovlen = 1;
} else {
mm[i].msg_hdr.msg_iov = NULL;
mm[i].msg_hdr.msg_iovlen = 0;
}
mm[i].msg_hdr.msg_control = NULL;
mm[i].msg_hdr.msg_controllen = 0;
mm[i].msg_hdr.msg_flags = 0;
count++;
}
count = sendmmsg(s, mm, count, MSG_NOSIGNAL);
if (count < 0)
return 1;
return count;
}
/**
* udp_sock_init() - Initialise listening sockets for a given port
* @c: Execution context
* @ns: In pasta mode, if set, bind with loopback address in namespace
* @af: Address family to select a specific IP version, or AF_UNSPEC
* @addr: Pointer to address for binding, NULL if not configured
* @ifname: Name of interface to bind to, NULL if not configured
* @port: Port, host order
*
* Return: 0 on (partial) success, negative error code on (complete) failure
*/
int udp_sock_init(const struct ctx *c, int ns, sa_family_t af,
const void *addr, const char *ifname, in_port_t port)
{
union udp_epoll_ref uref = { .splice = (c->mode == MODE_PASTA),
.orig = true, .port = port };
int s, r4 = FD_REF_MAX + 1, r6 = FD_REF_MAX + 1;
if (ns)
uref.pif = PIF_SPLICE;
else
uref.pif = PIF_HOST;
if ((af == AF_INET || af == AF_UNSPEC) && c->ifi4) {
uref.v6 = 0;
if (!ns) {
r4 = s = sock_l4(c, AF_INET, IPPROTO_UDP, addr,
ifname, port, uref.u32);
udp_tap_map[V4][uref.port].sock = s < 0 ? -1 : s;
udp_splice_init[V4][port].sock = s < 0 ? -1 : s;
} else {
r4 = s = sock_l4(c, AF_INET, IPPROTO_UDP,
&in4addr_loopback,
ifname, port, uref.u32);
udp_splice_ns[V4][port].sock = s < 0 ? -1 : s;
}
}
if ((af == AF_INET6 || af == AF_UNSPEC) && c->ifi6) {
uref.v6 = 1;
if (!ns) {
r6 = s = sock_l4(c, AF_INET6, IPPROTO_UDP, addr,
ifname, port, uref.u32);
udp_tap_map[V6][uref.port].sock = s < 0 ? -1 : s;
udp_splice_init[V6][port].sock = s < 0 ? -1 : s;
} else {
r6 = s = sock_l4(c, AF_INET6, IPPROTO_UDP,
&in6addr_loopback,
ifname, port, uref.u32);
udp_splice_ns[V6][port].sock = s < 0 ? -1 : s;
}
}
if (IN_INTERVAL(0, FD_REF_MAX, r4) || IN_INTERVAL(0, FD_REF_MAX, r6))
return 0;
return r4 < 0 ? r4 : r6;
}
/**
* udp_splice_iov_init() - Set up buffers and descriptors for recvmmsg/sendmmsg
*/
static void udp_splice_iov_init(void)
{
int i;
for (i = 0; i < UDP_MAX_FRAMES; i++) {
struct msghdr *mh4 = &udp4_mh_splice[i].msg_hdr;
struct msghdr *mh6 = &udp6_mh_splice[i].msg_hdr;
mh4->msg_name = &udp4_localname;
mh4->msg_namelen = sizeof(udp4_localname);
mh6->msg_name = &udp6_localname;
mh6->msg_namelen = sizeof(udp6_localname);
udp4_iov_splice[i].iov_base = udp4_l2_buf[i].data;
udp6_iov_splice[i].iov_base = udp6_l2_buf[i].data;
mh4->msg_iov = &udp4_iov_splice[i];
mh6->msg_iov = &udp6_iov_splice[i];
mh4->msg_iovlen = mh6->msg_iovlen = 1;
}
}
/**
* udp_timer_one() - Handler for timed events on one port
* @c: Execution context
* @v6: Set for IPv6 connections
* @type: Socket type
* @port: Port number, host order
* @now: Current timestamp
*/
static void udp_timer_one(struct ctx *c, int v6, enum udp_act_type type,
in_port_t port, const struct timespec *now)
{
struct udp_splice_port *sp;
struct udp_tap_port *tp;
int *sockp = NULL;
switch (type) {
case UDP_ACT_TAP:
tp = &udp_tap_map[v6 ? V6 : V4][port];
if (now->tv_sec - tp->ts > UDP_CONN_TIMEOUT) {
sockp = &tp->sock;
tp->flags = 0;
}
break;
case UDP_ACT_SPLICE_INIT:
sp = &udp_splice_init[v6 ? V6 : V4][port];
if (now->tv_sec - sp->ts > UDP_CONN_TIMEOUT)
sockp = &sp->sock;
break;
case UDP_ACT_SPLICE_NS:
sp = &udp_splice_ns[v6 ? V6 : V4][port];
if (now->tv_sec - sp->ts > UDP_CONN_TIMEOUT)
sockp = &sp->sock;
break;
default:
return;
}
if (sockp && *sockp >= 0) {
int s = *sockp;
*sockp = -1;
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, s, NULL);
close(s);
bitmap_clear(udp_act[v6 ? V6 : V4][type], port);
}
}
/**
* udp_port_rebind() - Rebind ports to match forward maps
* @c: Execution context
* @outbound: True to remap outbound forwards, otherwise inbound
*
* Must be called in namespace context if @outbound is true.
*/
static void udp_port_rebind(struct ctx *c, bool outbound)
{
const uint8_t *fmap
= outbound ? c->udp.fwd_out.f.map : c->udp.fwd_in.f.map;
const uint8_t *rmap
= outbound ? c->udp.fwd_in.f.map : c->udp.fwd_out.f.map;
struct udp_splice_port (*socks)[NUM_PORTS]
= outbound ? udp_splice_ns : udp_splice_init;
unsigned port;
for (port = 0; port < NUM_PORTS; port++) {
if (!bitmap_isset(fmap, port)) {
if (socks[V4][port].sock >= 0) {
close(socks[V4][port].sock);
socks[V4][port].sock = -1;
}
if (socks[V6][port].sock >= 0) {
close(socks[V6][port].sock);
socks[V6][port].sock = -1;
}
continue;
}
/* Don't loop back our own ports */
if (bitmap_isset(rmap, port))
continue;
if ((c->ifi4 && socks[V4][port].sock == -1) ||
(c->ifi6 && socks[V6][port].sock == -1))
udp_sock_init(c, outbound, AF_UNSPEC, NULL, NULL, port);
}
}
/**
* udp_port_rebind_outbound() - Rebind ports in namespace
* @arg: Execution context
*
* Called with NS_CALL()
*
* Return: 0
*/
static int udp_port_rebind_outbound(void *arg)
{
struct ctx *c = (struct ctx *)arg;
ns_enter(c);
udp_port_rebind(c, true);
return 0;
}
/**
* udp_timer() - Scan activity bitmaps for ports with associated timed events
* @c: Execution context
* @now: Current timestamp
*/
void udp_timer(struct ctx *c, const struct timespec *now)
{
int n, t, v6 = 0;
unsigned int i;
long *word, tmp;
if (c->mode == MODE_PASTA) {
if (c->udp.fwd_out.f.mode == FWD_AUTO) {
fwd_scan_ports_udp(&c->udp.fwd_out.f, &c->udp.fwd_in.f,
&c->tcp.fwd_out, &c->tcp.fwd_in);
NS_CALL(udp_port_rebind_outbound, c);
}
if (c->udp.fwd_in.f.mode == FWD_AUTO) {
fwd_scan_ports_udp(&c->udp.fwd_in.f, &c->udp.fwd_out.f,
&c->tcp.fwd_in, &c->tcp.fwd_out);
udp_port_rebind(c, false);
}
}
if (!c->ifi4)
v6 = 1;
v6:
for (t = 0; t < UDP_ACT_TYPE_MAX; t++) {
word = (long *)udp_act[v6 ? V6 : V4][t];
for (i = 0; i < ARRAY_SIZE(udp_act[0][0]);
i += sizeof(long), word++) {
tmp = *word;
while ((n = ffsl(tmp))) {
tmp &= ~(1UL << (n - 1));
udp_timer_one(c, v6, t, i * 8 + n - 1, now);
}
}
}
if (!v6 && c->ifi6) {
v6 = 1;
goto v6;
}
}
/**
* udp_init() - Initialise per-socket data, and sockets in namespace
* @c: Execution context
*
* Return: 0
*/
int udp_init(struct ctx *c)
{
udp_sock_iov_init(c);
udp_invert_portmap(&c->udp.fwd_in);
udp_invert_portmap(&c->udp.fwd_out);
if (c->mode == MODE_PASTA) {
udp_splice_iov_init();
NS_CALL(udp_port_rebind_outbound, c);
}
return 0;
}