
A new approach to user-mode networking in qemu, and 
what KubeVirt can do with it

Slirp is dead, long live Slirp!

Stefano Brivio, Alona Paz

1

KVM Forum 2022



Who are we

2

Alona
● maintainer of KubeVirt, oVirt 

engine backend and oVirt UI 
● with Container Native 

Virtualisation team at Red Hat
● actually knows how this stuff is 

used

Stefano
● on-and-off kernel developer (core 

networking, netfilter)
● with Virtual Networking team at 

Red Hat
● prefers pods stir fried, but also 

enjoys tofu and edamame



This talk is not about…
You might be disappointed…

3

● Slirp (just a tiny bit)
● Rust (sorry!)
● microservices (could be worse)
● The Cloud (I swear)



This talk is about…
Wait, don’t leave yet!

4

● Kubernetes
● KubeVirt
● existing KubeVirt networking
● why KubeVirt needed passt
● passt



Kubernetes
Just a quick recap

5

Kubernetes, also known as k8s, is an open-source system for automating 
deployment, scaling, and management of containerised applications.

Pods are the smallest deployable units of computing that you can create 
and manage in Kubernetes. A pod is a group of containers, all the containers 
inside a pod share the same network namespace.

https://kubernetes.io/docs/concepts/overview/


KubeVirt
If you haven’t heard of it

6

KubeVirt is an add-on extending Kubernetes by adding resource types for 
virtual machines.

It allows users to run virtual machines alongside pods/containers in their 
Kubernetes clusters.

KubeVirt virtual machines run within regular Kubernetes pods, where they 
have access to standard pod networking, and can be managed using 
standard Kubernetes tools such as kubectl.

https://kubevirt.io/


Service Meshes
Give peas a chance

7

A service mesh, like the open source project Istio, is a way to control how different parts of a system 
share data with one another.

A sidecar (container) proxy sits 
alongside a microservice and 
routes requests to other proxies. 
Together, these sidecars form a 
mesh network.

https://istio.io/


Service Mesh Sidecar: Assumptions
Give virtual peas a chance, too

8

● Expects applications to run on the same network namespace as the proxy
● Needs sockets and processes 

visibility for socket redirection, 
monitoring, port mapping

● Assumes that the proxy sees the 
Pod set of addresses and routes

● Assumes the application traffic 
arrives from userspace

It is hard to meet those requirements when 
the main application is running inside a 
virtual machine and not a container.



9

KubeVirt currently has two main options binding the virtual machine to the pod networking:
● Bridge binding - Stealing the pod’s interface identity
● Masquerade binding - Using nftables rules to NAT the virtual machine traffic

KubeVirt Networking: existing bindings
Not all pods are created equal…



10

KubeVirt currently has two main options binding the virtual machine to the pod networking:
● Bridge binding - Stealing the pod’s interface identity
● Masquerade binding - Using nftables rules to NAT the virtual machine traffic

KubeVirt Networking: existing bindings
Not all pods are created equal…



Downsides of bridge and masquerade bindings

11

Both:
❌ don’t allow seamless integration with service meshes (bridge 

binding doesn’t allow sidecars, masquerade binding traffic doesn’t 
land in the pod’s userspace)

❌ had to be implemented by ourselves – introduce a DHCP server for 
them, and if we want multicast, we have to do that too

❌ require tricks to work on an unprivileged pod

“do you need to insmod?”



12

KubeVirt Networking: passt binding
A 50% decrease in rectangles

● passt binding - implements a translation 
layer between a Layer-2 network interface 
and native Layer-4 sockets



Advantages of passt as KubeVirt network binding

13

With passt:
✅ we can seamlessly integrate service meshes since it maps 

packets at Layer-2 to Layer-4
✅ we share a tool that is universal
✅ we don’t need extra networking security capabilities



passt might be the future of KubeVirt networking

14

KubeVirt is thinking about substituting both existing bindings that are 
used to connect the Pod network with passt

https://github.com/kubevirt/kubevirt/issues/8371


Introducing passt
passt means roughly “yeah, fine” in German

15

passt implements a translation between Ethernet frames from/to qemu 
(Layer-2, over AF_UNIX socket) and TCP, UDP, ICMP echo sockets 
(Layer-4). It doesn’t require any capabilities or privileges, and it can be 
used as a simple replacement for Slirp.

https://passt.top/


Why not Slirp?
“Like Slirp, but not Slirp”

[anonymous KubeVirt developer, 2020]

16

Slirp also maps traffic between qemu interface and host sockets, without the need for security 
privileges. However, it was developed for a different purpose:

● no focus on performance – no TCP window scaling (!), no syscall batching
● forces NAT, no way to copy addressing/routing from host (convenient for KubeVirt)
● implements a full TCP stack, not bare essential
● offers only partial IPv6 support: no NDP, no DHCPv6, no port mapping to guest
● runs in the same process context as qemu
● ships with a number of features such as application-level gateways (FTP, IRC), SMB support, 

etc. which contribute to increase the attack surface



Back to passt: data path, host to guest
Reduce, reuse, recycle

17

passt doesn’t keep per-connection buffers. This avoids the need for dynamic memory allocation, 
but it means that we can’t dequeue data until segments are acknowledged.

Read socket data into pre-cooked buffers and send batches to qemu, keeping the amount of 
syscalls to the bare minimum.



Data path: guest to host
Dreaming of sendmmmsg()

18

Read packets from qemu into single buffer, no further copies, scan headers and queue to sockets.

Send acknowledgement to the guest when the receiver sends them, delegating congestion control 
to original sender and receiver.



TCP Adaptation
What’s FIN_WAIT_2, again?

19

No full TCP state machine, three states only: the host kernel already implements a number of them. 
Event flags define possible transitions.



Security Topics
The last famous words…

20

● mount, PID, IPC and UTS namespaces are unshared (sandboxing)
○ no access to filesystems or other processes after initialisation

● no capabilities needed, as it doesn’t create network interfaces (CAP_NET_ADMIN)
● won’t run as root
● no dynamic memory allocation: sbrk(2), brk(2), mmap(2) blocked by seccomp
● strict seccomp profiles: only 26 syscalls allowed on x86_64
● no external dependencies other than a standard C library
● SELinux and AppArmor profiles shipped with repository

● not written in Rust (at least for the moment): that would exclude some classes of vulnerabilities 
(stack-based overflows), but makes it hard to forbid dynamic memory allocation
○ It should be possible to use only the Rust Core library inside the main loop
○ …but buffer alignment requirements would still require a heap of unsafe code



Performance Topics
Not too bad

21

● AVX2 checksum routines (on x86_64)
● pre-cooked buffers help with data locality
● two cache-hot copies, on any path
● no additional congestion control
● no userspace overhead: it’s all syscalls
● still a gap with multi-queue tap

Plan: add vhost-user back-end:
● one copy instead of two from qemu to 

host kernel
● no AF_UNIX copy pair (albeit cheap)

● the guest can use a 64 KiB MTU: no packets to the host kernel, which deals with segmentation
● segments are coalesced, messages are batched (including ACK segments)



Availability and Integrations
git clone git://passt.top/passt && make -C passt

22

● Linux only, for the moment
○ TCP_INFO socket option limits portability. Some BSD flavours now have equivalents

● Fedora packages available, unofficial packages for Debian, Ubuntu, OpenSUSE, CentOS
○ Try it now: https://passt.top/#try-it, check automated demos and CI

● KubeVirt tech preview, PoC for Kata Containers
● qemu integration: currently using a wrapper for AF_UNIX socket, series by Laurent Vivier 

for native support pending merge (hopefully not anymore as we speak!)
● libvirt: out-of-tree patch available (still using wrapper), updated draft in progress

contribute: lists, bugs, chat

pasta: same binary, for namespaces (slirp4netns equivalent)
● Podman integration proposed, pending wide package availability

https://passt.top/#try-it
https://passt.top/passt/about/#demo
https://passt.top/passt/about/#continuous-integration
https://github.com/kubevirt/kubevirt/pull/7849/
https://passt.top/passt/tree/contrib/kata-containers
https://patchwork.kernel.org/project/qemu-devel/cover/20220722190442.301310-1-lvivier@redhat.com/
https://passt.top/passt/tree/contrib/libvirt/0001-conf-Introduce-support-for-UNIX-domain-socket-as-qem.patch
https://lists.passt.top
https://bugs.passt.top/
https://chat.passt.top/
https://passt.top/passt/tree/contrib/podman


THE END
I mean, questions?

We’re short on time, don’t hesitate!

23

Credits
David Gibson (test framework, namespace options, etc.)
Fabian Deutsch (sponsoring the idea)
Jenifer Abrams (performance testing)
Laurent Vivier (AF_UNIX socket support in qemu)
Maya and Lenny (cat and rabbit who wrote most of passt’s codebase)
…and many others.


